toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Verbeeck, J.; Van Aert, S. pdf  doi
openurl 
  Title Model based quantification of EELS spectra Type A1 Journal article
  Year 2004 Publication Ultramicroscopy Abbreviated Journal (up) Ultramicroscopy  
  Volume 101 Issue 2/4 Pages 207-224  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Recent advances in model based quantification of electron energy loss spectra (EELS) are reported. The maximum likelihood method for the estimation of physical parameters describing an EELS spectrum, the validation of the model used in this estimation procedure, and the computation of the attainable precision, that is, the theoretical lower bound on the variance of these estimates, are discussed. Experimental examples on An and GaAs samples show the power of the maximum likelihood method and show that the theoretical prediction of the attainable precision can be closely approached even for spectra with overlapping edges where conventional EELS quantification fails. To provide end-users with a low threshold alternative to conventional quantification, a user friendly program was developed which is freely available under a GNU public license. (C) 2004 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000224046100016 Publication Date 2004-07-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 147 Open Access  
  Notes Fwo; Iuap P5/01 Approved Most recent IF: 2.843; 2004 IF: 2.215  
  Call Number UA @ lucian @ c:irua:57130UA @ admin @ c:irua:57130 Serial 2101  
Permanent link to this record
 

 
Author Verbeeck, J.; Van Aert, S.; Bertoni, G. pdf  doi
openurl 
  Title Model-based quantification of EELS spectra: including the fine structure Type A1 Journal article
  Year 2006 Publication Ultramicroscopy Abbreviated Journal (up) Ultramicroscopy  
  Volume 106 Issue 11-12 Pages 976-980  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract An extension to model-based electron energy loss spectroscopy (EELS) quantification is reported to improve the possibility of modelling fine structure changes in electron energy loss spectra. An equalisation function is used in the energy loss near edge structure (ELNES) region to model the differences between a single atom differential cross section and the cross section for an atom in a crystal. The equalisation function can be shown to approximate the relative density of unoccupied states for the given excitation edge. On a set of 200 experimental h-BN spectra, this technique leads to statistically acceptable models resulting into unbiased estimates of relative concentrations and making the estimated precisions come very close to the Cramer-Rao lower bound (CRLB). The method greatly expands the useability of model-based EELS quantification to spectra with pronounced fine structure. Another benefit of this model is that one also gets an estimate of the unoccupied density of states for a given excitation edge, without having to do background removal and deconvolution, making the outcome intrinsically more reliable and less noisy. (c) 2006 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000241592900004 Publication Date 2006-07-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 38 Open Access  
  Notes Goa; Fwo Iap-V Approved Most recent IF: 2.843; 2006 IF: 1.706  
  Call Number UA @ lucian @ c:irua:61379UA @ admin @ c:irua:61379 Serial 2102  
Permanent link to this record
 

 
Author van den Broek, W.; Van Aert, S.; van Dyck, D. pdf  doi
openurl 
  Title A model based reconstruction technique for depth sectioning with scanning transmission electron microscopy Type A1 Journal article
  Year 2010 Publication Ultramicroscopy Abbreviated Journal (up) Ultramicroscopy  
  Volume 110 Issue 5 Pages 548-554  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract Depth sectioning in high angular annular dark field scanning transmission electron microscopy is considered a candidate for three-dimensional characterization on the atomic scale. However at present the depth resolution is still far from the atomic level, due to strong limitations in the opening angle of the beam. In this paper we introduce a new, parameter based tomographic reconstruction algorithm that allows to make maximal use of the prior knowledge about the constituent atom types and the microscope settings, so as to retrieve the atomic positions and push the resolution to the atomic level in all three dimensions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000279065700022 Publication Date 2009-09-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 16 Open Access  
  Notes Fwo Approved Most recent IF: 2.843; 2010 IF: 2.063  
  Call Number UA @ lucian @ c:irua:83690 Serial 2104  
Permanent link to this record
 

 
Author de Backer, A.; De wael, A.; Gonnissen, J.; Van Aert, S. pdf  url
doi  openurl
  Title Optimal experimental design for nano-particle atom-counting from high-resolution STEM images Type A1 Journal article
  Year 2015 Publication Ultramicroscopy Abbreviated Journal (up) Ultramicroscopy  
  Volume 151 Issue 151 Pages 46-55  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In the present paper, the principles of detection theory are used to quantify the probability of error for atom-counting from high resolution scanning transmission electron microscopy (HR STEM) images. Binary and multiple hypothesis testing have been investigated in order to determine the limits to the precision with which the number of atoms in a projected atomic column can be estimated. The probability of error has been calculated when using STEM images, scattering cross-sections or peak intensities as a criterion to count atoms. Based on this analysis, we conclude that scattering cross-sections perform almost equally well as images and perform better than peak intensities. Furthermore, the optimal STEM detector design can be derived for atom-counting using the expression for the probability of error. We show that for very thin objects LAADF is optimal and that for thicker objects the optimal inner detector angle increases.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000351237800007 Publication Date 2014-11-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 24 Open Access  
  Notes 312483 Esteem2; Fwo G039311; G037413; esteem2_jra2 Approved Most recent IF: 2.843; 2015 IF: 2.436  
  Call Number c:irua:123926 c:irua:123926 Serial 2481  
Permanent link to this record
 

 
Author Van Aert, S.; den Dekker, A.J.; van Dyck, D.; van den Bos, A. doi  openurl
  Title Optimal experimental design of STEM measurement of atom column positions Type A1 Journal article
  Year 2002 Publication Ultramicroscopy Abbreviated Journal (up) Ultramicroscopy  
  Volume 90 Issue Pages 273-289  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000174770900004 Publication Date 2002-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 35 Open Access  
  Notes Approved Most recent IF: 2.843; 2002 IF: 1.772  
  Call Number UA @ lucian @ c:irua:47517 Serial 2483  
Permanent link to this record
 

 
Author Wang, A.; Van Aert, S.; Goos, P.; van Dyck, D. pdf  doi
openurl 
  Title Precision of three-dimensional atomic scale measurements from HRTEM images : what are the limits? Type A1 Journal article
  Year 2012 Publication Ultramicroscopy Abbreviated Journal (up) Ultramicroscopy  
  Volume 114 Issue Pages 20-30  
  Keywords A1 Journal article; Engineering Management (ENM); Electron microscopy for materials research (EMAT); Vision lab  
  Abstract In this paper, we investigate to what extent high resolution transmission electron microscopy images can be used to measure the mass, in terms of thickness, and surface profile, corresponding to the defocus offset, of an object at the atomic scale. Therefore, we derive an expression for the statistical precision with which these object parameters can be estimated in a quantitative analysis. Evaluating this expression as a function of the microscope settings allows us to derive the optimal microscope design. Acquiring three-dimensional structure information in terms of thickness turns out to be much more difficult than obtaining two-dimensional information on the projected atom column positions. The attainable precision is found to be more strongly affected by processes influencing the image contrast, such as phonon scattering, than by the specific choice of microscope settings. For a realistic incident electron dose, it is expected that atom columns can be distinguished with single atom sensitivity up to a thickness of the order of the extinction distance. A comparable thickness limit is determined to measure surface steps of one atom. An increase of the electron dose shifts the limiting thickness upward due to an increase in the signal-to-noise ratio.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000301954300003 Publication Date 2012-01-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 5 Open Access  
  Notes Fwo Approved Most recent IF: 2.843; 2012 IF: 2.470  
  Call Number UA @ lucian @ c:irua:94116 Serial 2692  
Permanent link to this record
 

 
Author Van Aert, S.; Verbeeck, J.; Erni, R.; Bals, S.; Luysberg, M.; van Dyck, D.; Van Tendeloo, G. pdf  doi
openurl 
  Title Quantitative atomic resolution mapping using high-angle annular dark field scanning transmission electron microscopy Type A1 Journal article
  Year 2009 Publication Ultramicroscopy Abbreviated Journal (up) Ultramicroscopy  
  Volume 109 Issue 10 Pages 1236-1244  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract A model-based method is proposed to relatively quantify the chemical composition of atomic columns using high angle annular dark field (HAADF) scanning transmission electron microscopy (STEM) images. The method is based on a quantification of the total intensity of the scattered electrons for the individual atomic columns using statistical parameter estimation theory. In order to apply this theory, a model is required describing the image contrast of the HAADF STEM images. Therefore, a simple, effective incoherent model has been assumed which takes the probe intensity profile into account. The scattered intensities can then be estimated by fitting this model to an experimental HAADF STEM image. These estimates are used as a performance measure to distinguish between different atomic column types and to identify the nature of unknown columns with good accuracy and precision using statistical hypothesis testing. The reliability of the method is supported by means of simulated HAADF STEM images as well as a combination of experimental images and electron energy-loss spectra. It is experimentally shown that statistically meaningful information on the composition of individual columns can be obtained even if the difference in averaged atomic number Z is only 3. Using this method, quantitative mapping at atomic resolution using HAADF STEM images only has become possible without the need of simultaneously recorded electron energy loss spectra.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000270015200004 Publication Date 2009-05-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 166 Open Access  
  Notes Fwo; Esteem 026019 Approved Most recent IF: 2.843; 2009 IF: 2.067  
  Call Number UA @ lucian @ c:irua:78585UA @ admin @ c:irua:78585 Serial 2748  
Permanent link to this record
 

 
Author Martinez, G.T.; Rosenauer, A.; de Backer, A.; Verbeeck, J.; Van Aert, S. pdf  doi
openurl 
  Title Quantitative composition determination at the atomic level using model-based high-angle annular dark field scanning transmission electron microscopy Type A1 Journal article
  Year 2014 Publication Ultramicroscopy Abbreviated Journal (up) Ultramicroscopy  
  Volume 137 Issue Pages 12-19  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract High angle annular dark field scanning transmission electron microscopy (HAADF STEM) images provide sample information which is sensitive to the chemical composition. The image intensities indeed scale with the mean atomic number Z. To some extent, chemically different atomic column types can therefore be visually distinguished. However, in order to quantify the atomic column composition with high accuracy and precision, model-based methods are necessary. Therefore, an empirical incoherent parametric imaging model can be used of which the unknown parameters are determined using statistical parameter estimation theory (Van Aert et al., 2009, [1]). In this paper, it will be shown how this method can be combined with frozen lattice multislice simulations in order to evolve from a relative toward an absolute quantification of the composition of single atomic columns with mixed atom types. Furthermore, the validity of the model assumptions are explored and discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000331092200003 Publication Date 2013-11-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 74 Open Access  
  Notes FWO; FP7; ERC Countatoms; ESTEEM2; esteem2_ta Approved Most recent IF: 2.843; 2014 IF: 2.436  
  Call Number UA @ lucian @ c:irua:111579UA @ admin @ c:irua:111579 Serial 2749  
Permanent link to this record
 

 
Author Martinez, G.T.; Jones, L.; de Backer, A.; Béché, A.; Verbeeck, J.; Van Aert, S.; Nellist, P.D. pdf  url
doi  openurl
  Title Quantitative STEM normalisation : the importance of the electron flux Type A1 Journal article
  Year 2015 Publication Ultramicroscopy Abbreviated Journal (up) Ultramicroscopy  
  Volume 159 Issue 159 Pages 46-58  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Annular dark-field (ADF) scanning transmission electron microscopy (STEM) has become widely used in quantitative studies based on the opportunity to directly compare experimental and simulated images. This comparison merely requires the experimental data to be normalised and expressed in units of fractional beam-current. However, inhomogeneities in the response of electron detectors can complicate this normalisation. The quantification procedure becomes both experiment and instrument specific, requiring new simulations for the particular response of each instrument's detector, and for every camera-length used. This not only impedes the comparison between different instruments and research groups, but can also be computationally very time consuming. Furthermore, not all image simulation methods allow for the inclusion of an inhomogeneous detector response. In this work, we propose an alternative method for normalising experimental data in order to compare these with simulations that consider a homogeneous detector response. To achieve this, we determine the electron flux distribution reaching the detector by means of a camera-length series or a so-called atomic column cross-section averaged convergent beam electron diffraction (XSACBED) pattern. The result is then used to determine the relative weighting of the detector response. Here we show that the results obtained by this new electron flux weighted (EFW) method are comparable to the currently used method, while considerably simplifying the needed simulation libraries. The proposed method also allows one to obtain a metric that describes the quality of the detector response in comparison with the ideal detector response.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000366220000006 Publication Date 2015-08-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 27 Open Access  
  Notes 246791 Countatoms; 278510 Vortex; 312483 Esteem2; Fwo G036815; G036915; G037413; G004413; esteem2ta ECASJO; Approved Most recent IF: 2.843; 2015 IF: 2.436  
  Call Number c:irua:127293 c:irua:127293UA @ admin @ c:irua:127293 Serial 2762  
Permanent link to this record
 

 
Author van den Broek, W.; Van Aert, S.; Goos, P.; van Dyck, D. pdf  doi
openurl 
  Title Throughput maximization of particle radius measurements by balancing size and current of the electron probe Type A1 Journal article
  Year 2011 Publication Ultramicroscopy Abbreviated Journal (up) Ultramicroscopy  
  Volume 111 Issue 7 Pages 940-947  
  Keywords A1 Journal article; Engineering Management (ENM); Electron microscopy for materials research (EMAT); Vision lab  
  Abstract In thispaperweinvestigatewhichprobesizemaximizesthethroughputwhenmeasuringtheradiusof nanoparticlesinhighangleannulardarkfieldscanningtransmissionelectronmicroscopy(HAADFSTEM). The sizeandthecorrespondingcurrentoftheelectronprobedeterminetheprecisionoftheestimateofa particlesradius.Maximizingthroughputmeansthatamaximumnumberofparticlesshouldbeimaged withinagiventimeframe,sothataprespecifiedprecisionisattained.WeshowthatBayesianstatistical experimentaldesignisaveryusefulapproachtodeterminetheoptimalprobesizeusingacertainamount of priorknowledgeaboutthesample.Thedependenceoftheoptimalprobesizeonthedetectorgeometry and thediameter,variabilityandatomicnumberoftheparticlesisinvestigated.Anexpressionforthe optimalprobesizeintheabsenceofanykindofpriorknowledgeaboutthespecimenisderivedaswell.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000300461000026 Publication Date 2010-11-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 7 Open Access  
  Notes Approved Most recent IF: 2.843; 2011 IF: 2.471  
  Call Number UA @ lucian @ c:irua:89657 Serial 3659  
Permanent link to this record
 

 
Author Lobato, I.; Van Aert, S.; Verbeeck, J. pdf  doi
openurl 
  Title Progress and new advances in simulating electron microscopy datasets using MULTEM Type A1 Journal article
  Year 2016 Publication Ultramicroscopy Abbreviated Journal (up) Ultramicroscopy  
  Volume 168 Issue 168 Pages 17-27  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A new version of the open source program MULTEM is presented here. It includes a graphical user interface, tapering truncation of the atomic potential, CPU multithreading functionality, single/double precision calculations, scanning transmission electron microscopy (STEM) simulations using experimental detector sensitivities, imaging STEM (ISTEM) simulations, energy filtered transmission electron microscopy (EFTEM) simulations, STEM electron energy loss spectroscopy (EELS) simulations along with other improvements in the algorithms. We also present a mixed channeling approach for the calculation of inelastic excitations, which allows one to considerably speed up time consuming EFTEM/STEM-EELS calculations.  
  Address EMAT, University of Antwerp, Department of Physics, Groenenborgerlaan 171, B-2020 Antwerp, Belgium  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000380754100003 Publication Date 2016-06-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 43 Open Access  
  Notes The authors acknowledge financial support from the European Union under the Seventh Framework Program under a contract for an Integrated Infrastructure Initiative. Reference No. 312483- ESTEEM2. The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (G.0374.13N, G.0369.15N and G.0368.15N).; esteem2jra3; esteem2na3; esteem2_jra2 Approved Most recent IF: 2.843  
  Call Number c:irua:134088 c:irua:134088UA @ admin @ c:irua:134088 Serial 4093  
Permanent link to this record
 

 
Author Gonnissen, J.; De Backer, A.; den Dekker, A.J.; Sijbers, J.; Van Aert, S. pdf  url
doi  openurl
  Title Detecting and locating light atoms from high-resolution STEM images: The quest for a single optimal design Type A1 Journal article
  Year 2016 Publication Ultramicroscopy Abbreviated Journal (up) Ultramicroscopy  
  Volume 170 Issue 170 Pages 128-138  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract In the present paper, the optimal detector design is investigated for both detecting and locating light atoms from high resolution scanning transmission electron microscopy (HR STEM) images. The principles of detection theory are used to quantify the probability of error for the detection of light atoms from HR STEM images. To determine the optimal experiment design for locating light atoms, use is made of the so-called Cramer-Rao Lower Bound (CRLB). It is investigated if a single optimal design can be found for both the detection and location problem of light atoms. Furthermore, the incoming electron dose is optimised for both research goals and it is shown that picometre range precision is feasible for the estimation of the atom positions when using an appropriate incoming electron dose under the optimal detector settings to detect light atoms.  
  Address Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium. Electronic address: sandra.vanaert@uantwerpen.be  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000386925500014 Publication Date 2016-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 6 Open Access  
  Notes The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (G.0368.15, G.0369.15 and G.0374.13) and a postdoctoral research grant to A. De Backer. The research leading to these results has also received funding from the European Union Seventh Framework Programme [FP7/2007-2013] under Grant agreement no. 312483 (ESTEEM2). The authors would also like to thank A. Rosenauer for providing access to the STEMsim software and Gerardo T. Martinez for fruitful discussions.; esteem2_jra2 Approved Most recent IF: 2.843  
  Call Number c:irua:135337 c:irua:135337 Serial 4128  
Permanent link to this record
 

 
Author De Backer, A.; van den Bos, K.H.W.; Van den Broek, W.; Sijbers, J.; Van Aert, S. pdf  url
doi  openurl
  Title StatSTEM: An efficient approach for accurate and precise model-based quantification of atomic resolution electron microscopy images Type A1 Journal article
  Year 2016 Publication Ultramicroscopy Abbreviated Journal (up) Ultramicroscopy  
  Volume 171 Issue 171 Pages 104-116  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract An efficient model-based estimation algorithm is introduced to quantify the atomic column positions and intensities from atomic resolution (scanning) transmission electron microscopy ((S)TEM) images. This algorithm uses the least squares estimator on image segments containing individual columns fully accounting for overlap between neighbouring columns, enabling the analysis of a large field of view. For this algorithm, the accuracy and precision with which measurements for the atomic column positions and scattering cross-sections from annular dark field (ADF) STEM images can be estimated, has been investigated. The highest attainable precision is reached even for low dose images. Furthermore, the advantages of the model-based approach taking into account overlap between neighbouring columns are highlighted. This is done for the estimation of the distance between two neighbouring columns as a function of their distance and for the estimation of the scattering cross-section which is compared to the integrated intensity from a Voronoi cell. To provide end-users this well-established quantification method, a user friendly program, StatSTEM, is developed which is freely available under a GNU public license.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000389106200014 Publication Date 2016-09-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 43 Open Access  
  Notes The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (G.0393.11, G.0064.10 and G.0374.13), a Ph.D. research grant to K.H.W. van den Bos, and a postdoctoral research grant to A. De Backer. The research leading to these results has received funding from the European Union Seventh Framework Programme under Grant Agreement 312483 – ESTEEM2 (Integrated Infrastructure Initiative-I3). A. Rosenauer is acknowledged for providing the STEMsim program.; esteem2_jra2 Approved Most recent IF: 2.843  
  Call Number EMAT @ emat @ c:irua:135516 Serial 4280  
Permanent link to this record
 

 
Author Martinez, G.T.; van den Bos, K.H.W.; Alania, M.; Nellist, P.D.; Van Aert, S. pdf  url
doi  openurl
  Title Thickness dependence of scattering cross-sections in quantitative scanning transmission electron microscopy Type A1 Journal article
  Year 2018 Publication Ultramicroscopy Abbreviated Journal (up) Ultramicroscopy  
  Volume 187 Issue Pages 84-92  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In quantitative scanning transmission electron microscopy (STEM), scattering cross-sections have been shown to be very sensitive to the number of atoms in a column and its composition. They correspond to the integrated intensity over the atomic column and they outperform other measures. As compared to atomic column peak intensities, which saturate at a given thickness, scattering cross-sections increase monotonically. A study of the electron wave propagation is presented to explain the sensitivity of the scattering cross-sections. Based on the multislice algorithm, we analyse the wave propagation inside the crystal and its link to the scattered signal for the different probe positions contained in the scattering cross-section for detector collection in the low-, middle- and high-angle regimes. The influence to the signal from scattering of neighbouring columns is also discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000428131200011 Publication Date 2018-01-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 4 Open Access Not_Open_Access: Available from 01.02.2020  
  Notes The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings ( G.0374.13N , G.0369.15N , G.0368.15N and WO.010.16N ) and a PhD grant to K.H.W.v.d.B. The research leading to these results has received funding from the European Union 7th Framework Programme [ FP7 /2007-2013] under Grant agreement no. 312483 (ESTEEM2). The authors are grateful to A. Rosenauer for providing access to the StemSim software. Approved Most recent IF: 2.843  
  Call Number EMAT @ emat @c:irua:149384 Serial 4809  
Permanent link to this record
 

 
Author van den Bos, K.H.W.; Krause, F.F.; Béché, A.; Verbeeck, J.; Rosenauer, A.; Van Aert, S. url  doi
openurl 
  Title Locating light and heavy atomic column positions with picometer precision using ISTEM Type A1 Journal article
  Year 2016 Publication Ultramicroscopy Abbreviated Journal (up) Ultramicroscopy  
  Volume 172 Issue 172 Pages 75-81  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Recently, imaging scanning transmission electron microscopy (ISTEM) has been proposed as a promising new technique combining the advantages of conventional TEM (CTEM) and STEM [1]. The ability to visualize light and heavy elements together makes it a particularly interesting new, spatially incoherent imaging mode. Here, we evaluate this technique in term of precision with which atomic column locations can be measured. By using statistical parameter estimation theory, we will show that these locations can be accurately measured with a precision in the picometer range. Furthermore, a quantitative comparison is made with HAADF STEM imaging to investigate the advantages of ISTEM.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000390600200009 Publication Date 2016-10-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 8 Open Access  
  Notes The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (G.0374.13N, G.0368.15N, G.0369.15N), and by a Ph.D. grant to K.H.W. van den Bos. The research leading to these results has received funding from the Deutsche Forschungsgemeinschaft under Contract No. RO 2057/4-2 and the European Union Seventh Framework Programme under Grant Agreement 312483 – ESTEEM2. We thank Prof. G. Koster from the University of Twente for kindly providing us with the PbTiO3 test sample. Approved Most recent IF: 2.843  
  Call Number EMAT @ emat @ c:irua:136109UA @ admin @ c:irua:136109 Serial 4288  
Permanent link to this record
 

 
Author Gonnissen, J.; De Backer, A.; den Dekker, A.J.; Sijbers, J.; Van Aert, S. url  doi
openurl 
  Title Atom-counting in High Resolution Electron Microscopy: TEM or STEM – that's the question Type A1 Journal article
  Year 2016 Publication Ultramicroscopy Abbreviated Journal (up) Ultramicroscopy  
  Volume 174 Issue 174 Pages 112-120  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract In this work, a recently developed quantitative approach based on the principles of detection theory is used in order to determine the possibilities and limitations of High Resolution Scanning Transmission Electron Microscopy (HR STEM) and HR TEM for atom-counting. So far, HR STEM has been shown to be an appropriate imaging mode to count the number of atoms in a projected atomic column. Recently, it has been demonstrated that HR TEM, when using negative spherical aberration imaging, is suitable for atom-counting as well. The capabilities of both imaging techniques are investigated and compared using the probability of error as a criterion. It is shown that for the same incoming electron dose, HR STEM outperforms HR TEM under common practice standards, i.e. when the decision is based on the probability function of the peak intensities in HR TEM and of the scattering cross-sections in HR STEM. If the atom-counting decision is based on the joint probability function of the image pixel values, the dependence of all image pixel intensities as a function of thickness should be known accurately. Under this assumption, the probability of error may decrease significantly for atom-counting in HR TEM and may, in theory, become lower as compared to HR STEM under the predicted optimal experimental settings. However, the commonly used standard for atom-counting in HR STEM leads to a high performance and has been shown to work in practice.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000403342200013 Publication Date 2016-10-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 2 Open Access  
  Notes The authors gratefully acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (G.0368.15N, G.0369.15N, G.0374.13N, and WO.010.16N) and a postdoctoral grant to A. De Backer. The research leading to these results has received funding from the European Union Seventh Framework Programme [FP7/2007-2013] under Grant agreement no. 312483 (ESTEEM2). Approved Most recent IF: 2.843  
  Call Number EMAT @ emat @ c:irua:137102 Serial 4315  
Permanent link to this record
 

 
Author Alania, M.; Altantzis, T.; De Backer, A.; Lobato, I.; Bals, S.; Van Aert, S. pdf  url
doi  openurl
  Title Depth sectioning combined with atom-counting in HAADF STEM to retrieve the 3D atomic structure Type A1 Journal article
  Year 2016 Publication Ultramicroscopy Abbreviated Journal (up) Ultramicroscopy  
  Volume 177 Issue 177 Pages 36-42  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Aberration correction in scanning transmission electron microscopy (STEM) has greatly improved the lateral and depth resolution. When using depth sectioning, a technique during which a series of images is recorded at different defocus values, single impurity atoms can be visualised in three dimensions. In this paper, we investigate new possibilities emerging when combining depth sectioning and precise atom-counting in order to reconstruct nanosized particles in three dimensions. Although the depth resolution does not allow one to precisely locate each atom within an atomic column, it will be shown that the depth location of an atomic column as a whole can be measured precisely. In this manner, the morphology of a nanoparticle can be reconstructed in three dimensions. This will be demonstrated using simulations and experimental data of a gold nanorod.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000401219800006 Publication Date 2016-11-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 13 Open Access OpenAccess  
  Notes The authors acknowledge financial support from the European Union under the Seventh Framework Program under a contract for an Integrated Infrastructure Initiative. Reference No. 312483-ESTEEM2. S. Bals acknowledges funding from the European Research Council (Starting Grant No. COLOURATOMS 335078). The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (G.0374.13N, G.0369.15N and G.0368.15N) and a post-doctoral grant to A. De Backer and T. Altantzis. The authors are grateful to Professor Luis M. Liz-Marzán for providing the sample.; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); Approved Most recent IF: 2.843  
  Call Number EMAT @ emat @ c:irua:138015UA @ admin @ c:irua:138015 Serial 4316  
Permanent link to this record
 

 
Author Alania, M.; De Backer, A.; Lobato, I.; Krause, F.F.; Van Dyck, D.; Rosenauer, A.; Van Aert, S. pdf  url
doi  openurl
  Title How precise can atoms of a nanocluster be located in 3D using a tilt series of scanning transmission electron microscopy images? Type A1 Journal article
  Year 2017 Publication Ultramicroscopy Abbreviated Journal (up) Ultramicroscopy  
  Volume 181 Issue 181 Pages 134-143  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract In this paper, we investigate how precise atoms of a small nanocluster can ultimately be located in three dimensions (3D) from a tilt series of images acquired using annular dark field (ADF) scanning transmission electron microscopy (STEM). Therefore, we derive an expression for the statistical precision with which the 3D atomic position coordinates can be estimated in a quantitative analysis. Evaluating this statistical precision as a function of the microscope settings also allows us to derive the optimal experimental design. In this manner, the optimal angular tilt range, required electron dose, optimal detector angles, and number of projection images can be determined.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000411170800016 Publication Date 2016-12-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 3 Open Access OpenAccess  
  Notes The authors acknowledge financial support from the European Union under the Seventh Framework Program under a contract for an Integrated Infrastructure Initiative. Reference No. 312483-ESTEEM2. The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (G.0374.13N, G.0369.15N, G.0368.15N, and WO.010.16N) and a post-doctoral grant to A. De Backer, and from the DFG under contract No. RO-2057/4-2. Approved Most recent IF: 2.843  
  Call Number EMAT @ emat @ c:irua:144432 Serial 4618  
Permanent link to this record
 

 
Author Gauquelin, N.; van den Bos, K.H.W.; Béché, A.; Krause, F.F.; Lobato, I.; Lazar, S.; Rosenauer, A.; Van Aert, S.; Verbeeck, J. pdf  url
doi  openurl
  Title Determining oxygen relaxations at an interface: A comparative study between transmission electron microscopy techniques Type A1 Journal article
  Year 2017 Publication Ultramicroscopy Abbreviated Journal (up) Ultramicroscopy  
  Volume 181 Issue 181 Pages 178-190  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Nowadays, aberration corrected transmission electron microscopy (TEM) is a popular method to characterise nanomaterials at the atomic scale. Here, atomically resolved images of nanomaterials are acquired, where the contrast depends on the illumination, imaging and detector conditions of the microscope. Visualization of light elements is possible when using low angle annular dark field (LAADF) STEM, annular bright field (ABF) STEM, integrated differential phase contrast (iDPC) STEM, negative spherical aberration imaging (NCSI) and imaging STEM (ISTEM). In this work, images of a NdGaO3-La0.67Sr0.33MnO3 (NGO-LSMO) interface are quantitatively evaluated by using statistical parameter estimation theory. For imaging light elements, all techniques are providing reliable results, while the techniques based on interference contrast, NCSI and ISTEM, are less robust in terms of accuracy for extracting heavy column locations. In term of precision, sample drift and scan distortions mainly limits the STEM based techniques as compared to NCSI. Post processing techniques can, however, partially compensate for this. In order to provide an outlook to the future, simulated images of NGO, in which the unavoidable presence of Poisson noise is taken into account, are used to determine the ultimate precision. In this future counting noise limited scenario, NCSI and ISTEM imaging will provide more precise values as compared to the other techniques, which can be related to the mechanisms behind the image recording.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000411170800022 Publication Date 2017-06-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 34 Open Access OpenAccess  
  Notes The authors acknowledge financial support from Flanders (FWO, Belgium) through project fundings (G.0044.13N, G.0374.13N, G.0368.15N, G.0369.15N), and by a Ph.D. grant to K.H.W.v.d.B. The Qu-Ant-EM microscope used for this study was partly funded by the Hercules fund from the Flemish Government. A.B. and N.G. acknowledge the EUROTAPES project (FP7-NMP.2011.2.2-1 Grant no.280432) which partly funded this study. N.G., A.B. and J.V. acknowledge funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant 278510 VORTEX. The research leading to these results has received funding from the Deutsche Forschungsgemeinschaft under Contract No. RO 2057/4-2 and the European Union Seventh Framework Programme under Grant Agreement 312483 – ESTEEM2. We thank Prof. G. Koster from the University of Twente for kindly providing us with the LSMO-NGO test sample. Approved Most recent IF: 2.843  
  Call Number EMAT @ emat @ c:irua:144435UA @ admin @ c:irua:144435 Serial 4620  
Permanent link to this record
 

 
Author De wael, A.; De Backer, A.; Jones, L.; Nellist, P.D.; Van Aert, S. pdf  url
doi  openurl
  Title Hybrid statistics-simulations based method for atom-counting from ADF STEM images Type A1 Journal article
  Year 2017 Publication Ultramicroscopy Abbreviated Journal (up) Ultramicroscopy  
  Volume 177 Issue 177 Pages 69-77  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A hybrid statistics-simulations based method for atom-counting from annular dark field scanning transmission electron microscopy (ADF STEM) images of monotype crystalline nanostructures is presented. Different atom-counting methods already exist for model-like systems. However, the increasing relevance of radiation damage in the study of nanostructures demands a method that allows atom-counting from low dose images with a low signal-to-noise ratio. Therefore, the hybrid method directly includes prior knowledge from image simulations into the existing statistics-based method for atom-counting, and accounts in this manner for possible discrepancies between actual and simulated experimental conditions. It is shown by means of simulations and experiments that this hybrid method outperforms the statistics-based method, especially for low electron doses and small nanoparticles. The analysis of a simulated low dose image of a small nanoparticle suggests that this method allows for far more reliable quantitative analysis of beam-sensitive materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000401219800010 Publication Date 2017-01-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 8 Open Access OpenAccess  
  Notes The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (G.0374.13N, G.0368.15N, G.0369.15N, and WO.010.16N), and a postdoctoral research Grant to A. De Backer. The research leading to these results has received funding from the European Union Seventh Framework Programme under Grant Agreement 312483 – ESTEEM2 (Integrated Infrastructure Initiative-I3). The authors are grateful to G.T. Martinez for providing image simulations. Approved Most recent IF: 2.843  
  Call Number EMAT @ emat @ c:irua:141718 Serial 4486  
Permanent link to this record
 

 
Author Alania, M.; Lobato Hoyos, I.P.; Van Aert, S. pdf  url
doi  openurl
  Title Frozen lattice and absorptive model for high angle annular dark field scanning transmission electron microscopy : a comparison study in terms of integrated intensity and atomic column position measurement Type A1 Journal article
  Year 2018 Publication Ultramicroscopy Abbreviated Journal (up) Ultramicroscopy  
  Volume 184 Issue A Pages 188-198  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract <script type='text/javascript'>document.write(unpmarked('In this paper, both the frozen lattice (FL) and the absorptive potential (AP) approximation models are compared in terms of the integrated intensity and the precision with which atomic columns can be located from an image acquired using high angle annular dark field (HAADF) scanning transmission electron microscopy (STEM). The comparison is made for atoms of Cu, Ag, and Au. The integrated intensity is computed for both an isolated atomic column and an atomic column inside an FCC structure. The precision has been computed using the so-called Cramer-Rao Lower Bound (CRLB), which provides a theoretical lower bound on the variance with which parameters can be estimated. It is shown that the AP model results into accurate measurements for the integrated intensity only for small detector ranges under relatively low angles and for small thicknesses. In terms of the attainable precision, both methods show similar results indicating picometer range precision under realistic experimental conditions. (C) 2017 Elsevier B.V. All rights reserved.'));  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000415650200022 Publication Date 2017-09-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited Open Access OpenAccess  
  Notes ; The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (G.0374.13N, G.0369.15N, and G.0368.15N). A. Rosenauer is acknowledged for providing the STEMsim program. ; Approved Most recent IF: 2.843  
  Call Number UA @ lucian @ c:irua:147658 Serial 4877  
Permanent link to this record
 

 
Author Schryvers, D.; Salje, E.K.H.; Nishida, M.; De Backer, A.; Idrissi, H.; Van Aert, S. pdf  url
doi  openurl
  Title Quantification by aberration corrected (S)TEM of boundaries formed by symmetry breaking phase transformations Type A1 Journal article
  Year 2017 Publication Ultramicroscopy Abbreviated Journal (up) Ultramicroscopy  
  Volume 176 Issue Pages 194-199  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The present contribution gives a review of recent quantification work of atom displacements, atom site occupations and level of crystallinity in various systems and based on aberration corrected HR(S)TEM images. Depending on the case studied, picometer range precisions for individual distances can be obtained, boundary widths at the unit cell level determined or statistical evolutions of fractions of the ordered areas calculated. In all of these cases, these quantitative measures imply new routes for the applications of the respective materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000403992200026 Publication Date 2017-01-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 1 Open Access OpenAccess  
  Notes The authors acknowledge financial support from the Fund for Scientific Research-Flanders (G.0064.10N, G.0393.11N, G.0374.13N, G.0368.15N, G.0369.15N) and the Flemish Hercules 3 program for large infrastructure as well as financial support from the European Union Seventh Framework Programme (FP7/2007 – 2013) under Grant agreement no. 312483 (ESTEEM2). EKHS thanks EPSRC (EP/ K009702/1) and the Leverhulme trust (EM-2016-004) for support. DS and MN acknowledge financial support from the Japan Society for the Promotion of Science (JSPS, Japan) through the Grant-in-Aid for Scientific Research (A: No. 26249090) and the Strategic Young Researcher Overseas Visits Program for Accelerating Brain Circulation (R2408). Approved Most recent IF: 2.843  
  Call Number EMAT @ emat @c:irua:149654 Serial 4914  
Permanent link to this record
 

 
Author van den Bos, K.H.W.; Janssens, L.; De Backer, A.; Nellist, P.D.; Van Aert, S. url  doi
openurl 
  Title The atomic lensing model: new opportunities for atom-by-atom metrology of heterogeneous nanomaterials Type A1 Journal article
  Year 2019 Publication Ultramicroscopy Abbreviated Journal (up) Ultramicroscopy  
  Volume 203 Issue Pages 155  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The atomic lensing model has been proposed as a promising method facilitating atom-counting in heterogeneous nanocrystals [1]. Here, image simulations will validate the model, which describes dynamical diffraction as a superposition of individual atoms focussing the incident electrons. It will be demonstrated that the model is reliable in the annular dark field regime for crystals having columns containing dozens of atoms. By using the principles of statistical detection theory, it will be shown that this model gives new opportunities for detecting compositional differences.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000465021000020 Publication Date 2018-12-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 4 Open Access OpenAccess  
  Notes The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (G.0369.15N, G.0502.18N and WO.010.16N), and by personal grants to K.H.W. van den Bos and A. De Backer. This project has received funding from the European Research Council (ERC) under the European Unions Horizon 2020 research and innovation programme (grant agreement No. 770887). Approved Most recent IF: 2.843  
  Call Number EMAT @ emat @UA @ admin @ c:irua:155721 Serial 5074  
Permanent link to this record
 

 
Author Fatermans, J.; Van Aert, S.; den Dekker, A.J. url  doi
openurl 
  Title The maximum a posteriori probability rule for atom column detection from HAADF STEM images Type A1 Journal article
  Year 2019 Publication Ultramicroscopy Abbreviated Journal (up) Ultramicroscopy  
  Volume 201 Issue Pages 81-91  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract Recently, the maximum a posteriori (MAP) probability rule has been proposed as an objective and quantitative method to detect atom columns and even single atoms from high-resolution high-angle annular dark-field (HAADF) scanning transmission electron microscopy (STEM) images. The method combines statistical parameter estimation and model-order selection using a Bayesian framework and has been shown to be especially useful for the analysis of the structure of beam-sensitive nanomaterials. In order to avoid beam damage, images of such materials are usually acquired using a limited incoming electron dose resulting in a low contrast-to-noise ratio (CNR) which makes visual inspection unreliable. This creates a need for an objective and quantitative approach. The present paper describes the methodology of the MAP probability rule, gives its step-by-step derivation and discusses its algorithmic implementation for atom column detection. In addition, simulation results are presented showing that the performance of the MAP probability rule to detect the correct number of atomic columns from HAADF STEM images is superior to that of other model-order selection criteria, including the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC). Moreover, the MAP probability rule is used as a tool to evaluate the relation between STEM image quality measures and atom detectability resulting in the introduction of the so-called integrated CNR (ICNR) as a new image quality measure that better correlates with atom detectability than conventional measures such as signal-to-noise ratio (SNR) and CNR.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000466343800009 Publication Date 2019-02-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 1 Open Access OpenAccess  
  Notes The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (No. W.O.010.16N, No. G.0368.15N, No. G.0502.18N). This project has received funding from the European Research Council (ERC) under the European Unions Horizon 2020 research and innovation programme (Grant Agreement No. 770887). Approved Most recent IF: 2.843  
  Call Number EMAT @ emat @UA @ admin @ c:irua:157176 Serial 5153  
Permanent link to this record
 

 
Author Müller-Caspary, K.; Krause, F.F.; Winkler, F.; Béché, A.; Verbeeck, J.; Van Aert, S.; Rosenauer, A. pdf  url
doi  openurl
  Title Comparison of first moment STEM with conventional differential phase contrast and the dependence on electron dose Type A1 Journal article
  Year 2019 Publication Ultramicroscopy Abbreviated Journal (up) Ultramicroscopy  
  Volume 203 Issue 203 Pages 95-104  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract This study addresses the comparison of scanning transmission electron microscopy (STEM) measurements of momentum transfers using the first moment approach and the established method that uses segmented annular detectors. Using an ultrafast pixelated detector to acquire four-dimensional, momentum-resolved STEM signals, both the first moment calculation and the calculation of the differential phase contrast (DPC) signals are done for the same experimental data. In particular, we investigate the ability to correct the segment-based signal to yield a suitable approximation of the first moment for cases beyond the weak phase object approximation. It is found that the measurement of momentum transfers using segmented detectors can approach the first moment measurement as close as 0.13 h/nm in terms of a root mean square (rms) difference in 10 nm thick SrTiO3 for a detector with 16 segments. This amounts to 35% of the rms of the momentum transfers. In addition, we present a statistical analysis of the precision of first moment STEM as a function of dose. For typical experimental settings with recent hardware such as a Medipix3 Merlin camera attached to a probe-corrected STEM, we find that the precision of the measurement of momentum transfers stagnates above certain doses. This means that other instabilities such as specimen drift or scan noise have to be taken into account seriously for measurements that target, e.g., the detection of bonding effects in the charge density.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000465021000013 Publication Date 2018-12-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 25 Open Access OpenAccess  
  Notes ; The direct electron detector (Medipix3 Merlin) was funded by the Hercules fund from the Flemish Government. K. Muller-Caspary acknowledges funding from the Initiative and Network Fund of the Helmholtz Association within the framework of the Helmholtz Young Investigator Group moreSTEM (VH-NG-1317) at Forschungszentrum Julich, Germany. F. F. Krause acknowledges funding from the Central Research Development Fund of the University of Bremen, Germany. This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant Agreement No. 770887). The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) and the Research Fund of the University of Antwerp. ; Approved Most recent IF: 2.843  
  Call Number UA @ admin @ c:irua:160213 Serial 5242  
Permanent link to this record
 

 
Author Fatermans, J.; den Dekker, Aj.; Müller-Caspary, K.; Gauquelin, N.; Verbeeck, J.; Van Aert, S. url  doi
openurl 
  Title Atom column detection from simultaneously acquired ABF and ADF STEM images Type A1 Journal article
  Year 2020 Publication Ultramicroscopy Abbreviated Journal (up) Ultramicroscopy  
  Volume 219 Issue Pages 113046  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract In electron microscopy, the maximum a posteriori (MAP) probability rule has been introduced as a tool to determine the most probable atomic structure from high-resolution annular dark-field (ADF) scanning transmission electron microscopy (STEM) images exhibiting low contrast-to-noise ratio (CNR). Besides ADF imaging, STEM can also be applied in the annular bright-field (ABF) regime. The ABF STEM mode allows to directly visualize light-element atomic columns in the presence of heavy columns. Typically, light-element nanomaterials are sensitive to the electron beam, limiting the incoming electron dose in order to avoid beam damage and leading to images exhibiting low CNR. Therefore, it is of interest to apply the MAP probability rule not only to ADF STEM images, but to ABF STEM images as well. In this work, the methodology of the MAP rule, which combines statistical parameter estimation theory and model-order selection, is extended to be applied to simultaneously acquired ABF and ADF STEM images. For this, an extension of the commonly used parametric models in STEM is proposed. Hereby, the effect of specimen tilt has been taken into account, since small tilts from the crystal zone axis affect, especially, ABF STEM intensities. Using simulations as well as experimental data, it is shown that the proposed methodology can be successfully used to detect light elements in the presence of heavy elements.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000594768500005 Publication Date 2020-06-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.2 Times cited 9 Open Access OpenAccess  
  Notes The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (No. W.O.010.16N, No. G.0368.15N, No. G.0502.18N, EOS 30489208). This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No. 770887). The authors acknowledge funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 823717 – ESTEEM3. The direct electron detector (Medipix3, Quantum Detectors) was funded by the Hercules fund from the Flemish Government. K. M. C. acknowledges funding from the Initiative and Network Fund of the Helmholtz Association (Germany) under contract VH-NG-1317. The authors thank Mark Huijben from the University of Twente (Enschede, The Netherlands) for providing the LiMn2O4 sample used in section 4.2 of this study. N. G., J. V., and S. V. A. acknowledge funding from the University of Antwerp through the Concerted Research Actions (GOA) project Solarpaint and the TOP project. Approved Most recent IF: 2.2; 2020 IF: 2.843  
  Call Number EMAT @ emat @c:irua:169706 Serial 6373  
Permanent link to this record
 

 
Author De wael, A.; De Backer, A.; Van Aert, S. pdf  url
doi  openurl
  Title Hidden Markov model for atom-counting from sequential ADF STEM images: Methodology, possibilities and limitations Type A1 Journal article
  Year 2020 Publication Ultramicroscopy Abbreviated Journal (up) Ultramicroscopy  
  Volume 219 Issue Pages 113131  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We present a quantitative method which allows us to reliably measure dynamic changes in the atomic structure of monatomic crystalline nanomaterials from a time series of atomic resolution annular dark field scanning transmission electron microscopy images. The approach is based on the so-called hidden Markov model and estimates the number of atoms in each atomic column of the nanomaterial in each frame of the time series. We discuss the origin of the improved performance for time series atom-counting as compared to the current state-of-the-art atom-counting procedures, and show that the so-called transition probabilities that describe the probability for an atomic column to lose or gain one or more atoms from frame to frame are particularly important. Using these transition probabilities, we show that the method can also be used to estimate the probability and cross section related to structural changes. Furthermore, we explore the possibilities for applying the method to time series recorded under variable environmental conditions. The method is shown to be promising for a reliable quantitative analysis of dynamic processes such as surface diffusion, adatom dynamics, beam effects, or in situ experiments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000594770500003 Publication Date 2020-10-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.2 Times cited Open Access OpenAccess  
  Notes This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No. 770887 and No. 823717 ESTEEM3). The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through grants to A.D.w. and A.D.B. and projects G.0502.18N and EOS 30489208. Approved Most recent IF: 2.2; 2020 IF: 2.843  
  Call Number EMAT @ emat @c:irua:172449 Serial 6417  
Permanent link to this record
 

 
Author De wael, A.; De Backer, A.; Lobato, I.; Van Aert, S. pdf  url
doi  openurl
  Title Modelling ADF STEM images using elliptical Gaussian peaks and its effects on the quantification of structure parameters in the presence of sample tilt Type A1 Journal article
  Year 2021 Publication Ultramicroscopy Abbreviated Journal (up) Ultramicroscopy  
  Volume Issue Pages 113391  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A small sample tilt away from a main zone axis orientation results in an elongation of the atomic columns in ADF STEM images. An often posed research question is therefore whether the ADF STEM image intensities of tilted nanomaterials should be quantified using a parametric imaging model consisting of elliptical rather than the currently used symmetrical peaks. To this purpose, simulated ADF STEM images corresponding to different amounts of sample tilt are studied using a parametric imaging model that consists of superimposed 2D elliptical Gaussian peaks on the one hand and symmetrical Gaussian peaks on the other hand. We investigate the quantification of structural parameters such as atomic column positions and scattering cross sections using both parametric imaging models. In this manner, we quantitatively study what can be gained from this elliptical model for quantitative ADF STEM, despite the increased parameter space and computational effort. Although a qualitative improvement can be achieved, no significant quantitative improvement in the estimated structure parameters is achieved by the elliptical model as compared to the symmetrical model. The decrease in scattering cross sections with increasing sample tilt is even identical for both types of parametric imaging models. This impedes direct comparison with zone axis image simulations. Nonetheless, we demonstrate how reliable atom-counting can still be achieved in the presence of small sample tilt.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000704334200001 Publication Date 2021-09-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited Open Access OpenAccess  
  Notes This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No. 770887 and No. 823717 ESTEEM3). The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through grants to A.D.w. and A.D.B. and projects G.0502.18N, G.0267.18N, and EOS 30489208. S.V.A. acknowledges TOP BOF funding from the University of Antwerp.; esteem3JRA; esteem3reported Approved Most recent IF: 2.843  
  Call Number EMAT @ emat @c:irua:181462 Serial 6810  
Permanent link to this record
 

 
Author Robert, Hl.; Lobato, I.; Lyu, Fj.; Chen, Q.; Van Aert, S.; Van Dyck, D.; Müller-Caspary, K. url  doi
openurl 
  Title Dynamical diffraction of high-energy electrons investigated by focal series momentum-resolved scanning transmission electron microscopy at atomic resolution Type A1 Journal article
  Year 2022 Publication Ultramicroscopy Abbreviated Journal (up) Ultramicroscopy  
  Volume 233 Issue Pages 113425  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract We report a study of scattering dynamics in crystals employing momentum-resolved scanning transmission

electron microscopy under varying illumination conditions. As we perform successive changes of the probe

focus, multiple real-space signals are obtained in dependence of the shape of the incident electron wave.

With support from extensive simulations, each signal is shown to be characterised by an optimum focus for

which the contrast is maximum and which differs among different signals. For instance, a systematic focus

mismatch is found between images formed by high-angle scattering, being sensitive to thickness and chemical

composition, and the first moment in diffraction space, being sensitive to electric fields. It follows that a single

recording at one specific probe focus is usually insufficient to characterise materials comprehensively. Most

importantly, we demonstrate in experiment and simulation that the second moment (
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000734396800009 Publication Date 2021-11-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.2 Times cited Open Access OpenAccess  
  Notes We thank Dr. Florian Winkler for valuable discussions and experimental work at the early stages of this study. This work was supported by the Initiative and Network Fund of the Helmholtz Association (Germany) under contracts VH-NG-1317 and ZT-I-0025. This project furthermore received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement No. 770887). Approved Most recent IF: 2.2  
  Call Number EMAT @ emat @c:irua:184833 Serial 6898  
Permanent link to this record
 

 
Author Sentürk, D.G.; De Backer, A.; Friedrich, T.; Van Aert, S. pdf  url
doi  openurl
  Title Optimal experiment design for element specific atom counting using multiple annular dark field scanning transmission electron microscopy detectors Type A1 Journal article
  Year 2022 Publication Ultramicroscopy Abbreviated Journal (up) Ultramicroscopy  
  Volume 242 Issue Pages 113626  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract This paper investigates the possible benefits for counting atoms of different chemical nature when analysing multiple 2D scanning transmission electron microscopy (STEM) images resulting from independent annular dark field (ADF) detector regimes. To reach this goal, the principles of statistical detection theory are used to quantify the probability of error when determining the number of atoms in atomic columns consisting of multiple types of elements. In order to apply this theory, atom-counting is formulated as a statistical hypothesis test, where each hypothesis corresponds to a specific number of atoms of each atom type in an atomic column. The probability of error, which is limited by the unavoidable presence of electron counting noise, can then be computed from scattering-cross sections extracted from multiple ADF STEM images. Minimisation of the probability of error as a function of the inner and outer angles of a specified number of independent ADF collection regimes results in optimal experimental designs. Based on simulations of spherical Au@Ag and Au@Pt core–shell nanoparticles, we investigate how the combination of two non-overlapping detector regimes helps to improve the probability of error when unscrambling two types of atoms. In particular, the combination of a narrow low angle ADF detector with a detector formed by the remaining annular collection regime is found to be optimal. The benefit is more significant if the atomic number Z difference becomes larger. In

addition, we show the benefit of subdividing the detector regime into three collection areas for heterogeneous nanostructures based on a structure consisting of three types of elements, e.g., a mixture of Au, Ag and Al atoms. Finally, these results are compared with the probability of error resulting when one would ultimately use a pixelated 4D STEM detector and how this could help to further reduce the incident electron dose.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000873778100001 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.2 Times cited Open Access OpenAccess  
  Notes This work was supported by the European Research Council (Grant 770887 PICOMETRICS to S. Van Aert and Grant 823717 ESTEEM3). The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (G.0346.21N and EOS 30489208) and a postdoctoral grant to A. De Backer. S. Van Aert acknowledges funding from the University of Antwerp Research fund (BOF).; esteem3reported; esteem3jra Approved Most recent IF: 2.2  
  Call Number EMAT @ emat @c:irua:190925 Serial 7118  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: