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Abstract

A hybrid statistics-simulations based method for atom-counting from annular dark field scanning transmission
electron microscopy (ADF STEM) images of monotype crystalline nanostructures is presented. Different atom-
counting methods already exist for model-like systems. However, the increasing relevance of radiation damage in
the study of nanostructures demands a method that allows atom-counting from low dose images with a low signal-
to-noise ratio. Therefore, the hybrid method directly includes prior knowledge from image simulations into the
existing statistics-based method for atom-counting, and accounts in this manner for possible discrepancies between
actual and simulated experimental conditions. It is shown by means of simulations and experiments that this hybrid
method outperforms the statistics-based method, especially for low electron doses and small nanoparticles. The
analysis of a simulated low dose image of a small nanoparticle suggests that this method allows for far more reliable
quantitative analysis of beam-sensitive materials.

Keywords: annular dark field scanning transmission electron microscopy (ADF STEM), statistical parameter
estimation theory, atom-counting, beam-sensitive nanomaterials

1. Introduction

The physical properties of nanostructures are con-
trolled by their composition, their chemical bonding and
the positions of their atoms. At the nanoscale, the prop-
erties of materials are strongly size-dependent [1, 2, 3].
This size dependence opens up many possibilities for the
production of nanomaterials with unique properties, but
also demands an accurate and precise quantification of
their size. An excellent technique to study nanostruc-
tures is atomic resolution scanning transmission elec-
tron microscopy (STEM) [4, 5]. The intensities in an-
nular dark field scanning transmission electron micro-
scopy (ADF STEM) monotonically depend on the atomic
number Z and on the thickness of the material [5, 6,
7, 8], which makes this imaging mode particularly suit-
able for performing a quantitative analysis of nanostruc-
tures [9, 10, 11], such as atom-counting [12, 13]. By
counting the number of atoms in each atomic column
from two-dimensional (2D) ADF STEM images recor-
ded under a few different viewing directions, a three-
dimensional (3D) reconstruction of the structure can be
obtained [13, 14], allowing for the quantification of the
shape and size of the nanoparticle. Furthermore, atom-
counting results can be combined with ab-initio calcula-

tions or Monte Carlo simulations to study the dynamical
behaviour of nanoparticles [15, 16, 17, 18].

At present, two methods exist for counting the num-
ber of atoms from ADF STEM images, based either on
image simulations [12, 16] or on statistical parameter es-
timation theory [13, 19, 20]. In the present paper, these
methods will be referred to as the image simulations-
based method and the statistics-based method. In order
to count the number of atoms, the total scattered intens-
ity corresponding to each atomic column in the nanopar-
ticle is first quantified by the so-called scattering cross
section. These scattering cross sections are calculated by
integrating the image intensity in circles [21] or Voronoi
cells [16, 22] around the position of the atomic column, or
by estimating the volumes under Gaussian peaks which
are fitted to the atomic columns [10, 19, 20, 23].

The image simulations-based method is very intuit-
ive, as it directly compares experimental scattering cross
sections to simulated scattering cross sections [12, 16].
However, using this method, systematic errors in the
image simulations are difficult to detect, since such a
direct thickness assignment is always possible. In other
words, the accuracy of the obtained atom-counts depends
on the unknown accuracy of the experimental paramet-
ers used as an input for the image simulations, such
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as for example the detector angles or the mistilt of a
sample away from a perfect zone-axis [24]. Furthermore,
this method does not provide a measure for the preci-
sion of the atom-counts. It is worth noting that over
the last few years, techniques for the characterisation of
these experimental parameters have strongly improved
[24, 25, 26, 27, 28, 29].

Alternatively, in the statistics-based method, unknown
structure parameters are estimated by fitting an inco-
herent parametric imaging model to the experimental
images using a criterion of goodness of fit [10, 19, 20,
23, 30, 31]. Based on these estimated structure para-
meters, estimates for the scattering cross sections can
be obtained. These estimates are then used as an in-
put for a second parameter estimation step. The set of
scattering cross sections can be decomposed into com-
ponents, each generated by a set of columns with the
same number of atoms. Due to the unavoidable pres-
ence of noise, these components cannot be discriminated
visually. To retrieve these components, the set of scat-
tering cross sections is regarded as a statistical draw
from an underlying, unknown probability distribution.
The parameters of this probability distribution are es-
timated by maximising the likelihood of the probabil-
ity distribution [13, 19, 20, 32]. Based on the estimated
probability distribution, atom-counts are assigned to the
atomic columns. The described statistics-based method
is very reliable and results in atom-counts with single
atom sensitivity [20], provided the inherent limitations of
the method are not exceeded [19, 33]. The atom-counts
obtained by the statistics-based method for very small
nanoparticles are often unreliable due to the limited num-
ber of columns present in the image [19, 33]. Further-
more, the performance of the statistics-based method is
very sensitive to a low signal-to-noise ratio [19, 33]. The
increasing relevance of radiation damage, not only in bio-
logical studies, but also in the study of nanostructures
[34], demands a method that allows for a reliable quant-
itative analysis of low dose images with a low signal-
to-noise ratio. The hybrid statistics-simulations based
method is proposed to overcome the limitations of the
statistics-based method, and thus progress towards the
quantitative analysis of small, beam-sensitive materials.
This hybrid method will be realised by incorporating
prior knowledge about the material, obtained by care-
fully performing image simulations, into the statistics-
based method.

The outline of the present paper is as follows. The
methodology of the proposed hybrid method is discussed
in section 2, and then applied to a HAADF STEM im-
age of a gold nanorod in section 3. Next, in section 4,
the possibilities and limitations of this improved method

are examined, and a comparison with the statistics-based
method is performed. Then, in section 5, the hybrid
method is applied to a challenging experimental example,
a very small platinum-iridium nanoparticle, imaged using
a relatively low electron dose. Up to now, atoms could
not be counted reliably from such an image. This case
study will therefore be used to evaluate the amount of
improvement of the hybrid method as compared to the
statistics-based method. Finally, an image of the same
nanoparticle, simulated such that the electron dose is
more than ten times lower, is analysed, showing the pos-
sibilities for quantitative analysis of challenging beam-
sensitive nanomaterials using low electron doses.

2. Methodology

First, the total scattered intensity belonging to each
atomic column is quantified by estimating the scattering
cross sections for each atomic column. To this end, an
incoherent parametric imaging model consisting of 2D
Gaussian peaks is fitted to the experimental image us-
ing a least-squares criterion [10, 19, 20, 23, 30, 31], as
defined in Appendix A. Due to the unavoidable presence
of noise, the set of scattering cross sections is regarded
as a statistical draw from an underlying, unknown prob-
ability distribution, which can be described by a super-
position of 1D Gaussian components, called a Gaussian
mixture model [13, 19, 20]:

fmix

(
V̂n; Ψstat

G

)
=

G∑
g=1

πgφg

(
V̂n;µg, σ

)
, (1)

with

φg

(
V̂n;µg, σ

)
=

1√
2πσ2

exp

(
− (V̂n − µg)2

2σ2

)
, (2)

with σ the width of the components, µg the location of
the gth component, πg the mixing proportion of the gth

component, V̂n the scattering cross section of the nth

column, and Ψstat
G the parameter vector

Ψstat
G = (π1, ..., πG−1, µ1, ..., µG, σ)T , (3)

containing the 2G parameters to be estimated using the
statistics-based method. Note that πG is not estimated,
since the mixing proportions sum up to unity. Unlike the
statistics-based method, the hybrid method puts con-
straints on the locations µg of the Gaussian mixture
model. These constraints are based on prior knowledge
from image simulations. Therefore, image simulations
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Figure 1: The effect of slightly different experimental parameters on the scattering cross sections evaluated as a function
of the number of atoms per column can be approximated by a linear scaling. (a) Simulated scattering cross sections for Au
in [100] zone axis obtained with different detector inner angles. (b) Simulated scattering cross sections for different values of
the sample tilt around the [001] axis. Solid lines show scaled libraries. Colour online.

need to be performed for different thicknesses. The ex-
perimental parameters that describe the imaging condi-
tions used to record the ADF STEM image are used as
an input for the image simulations and should therefore
be measured as accurately as possible. The scattering
cross sections calculated from these simulated images of
atomic columns with different thicknesses compose the
so-called library. The prior knowledge is included into
the hybrid method by assuming that the locations of the
components correspond to scaled library values:

µg = aMg, (4)

where a is an unknown scaling parameter and Mg rep-
resents the library value of the gth component, corres-
ponding to columns with g atoms. This implies that the
number of parameters to be estimated reduces from 2G
to G+ 1:

Ψhybrid
G = (π1, ..., πG−1, a, σ)T . (5)

The probability distribution for the hybrid method is
therefore expressed as follows:

fmix
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By estimating the scaling parameter a to determine the
locations of the components of the probability distribu-
tion, we take into account possible unknown discrepan-
cies between actual and simulated experimental condi-
tions. Figure 1 shows simulated scattering cross sec-
tions evaluated as a function of the number of atoms per
column for different values of the detector inner angle
or sample tilt. The solid lines in both figures indicate
that linearly scaled libraries are a good approximation
for the scattering cross sections simulated using differ-
ent parameters. In figure 1a, simulated scattering cross
sections for Au in [100] zone axis obtained with different
detector inner angles 57 mrad, 60 mrad and 62 mrad are
shown. The scattering cross sections simulated using an
inner angle of 60 or 62 mrad can be approximated by lin-
early scaling the scattering cross sections corresponding
to 57 mrad, acting as the library in this example. These
detector inner angles correspond to reasonable measure-
ment errors in the detector inner angle of upto ±5 mrad
[24]. In figure 1b, simulated scattering cross sections
are shown for a sample tilt around the [001] axis, upto
15 mrad, which can experimentally still yield an atomic
resolution image [24]. Also in this case, the scaled library
for the sample in zone axis is an acceptable approxim-
ation for the scattering cross sections corresponding to
different sample tilt values.

The updates of the parameters of the probability dis-
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tribution used in the hybrid method are derived by max-
imising the likelihood function:

L(Ψhybrid
G ) =

N∏
n=1

fmix

(
V̂n; Ψhybrid

G

)
, (8)

or equivalently, by minimising the negative log likelihood
function, with respect to the parameters πg, a and σ.
Updates for these parameters are calculated using the it-
erative EM-algorithm [32] and are given by the following
expressions:
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the posterior probability that the estimated scattering
cross section of the nth column V̂n belongs to the gth

component. The index (k) indicates the iteration step.
Reliable starting values of the mixing proportions πg and
the width of the components σ are given by the following
expressions [19]:

π(0)
g =

1

G
, (13)

and

σ(0) =
max(V̂)−min(V̂)

2G
, (14)

where V̂ represents the set of scattering cross sections.
The starting values of the scaling parameter are more
critical because of the presence of many local minima in
the negative log likelihood as a function of the scaling
parameter. Therefore, multiple starting values for the
scaling parameter need to be used, ranging between a
minimum and maximum expected scaling value, in order

to ensure convergence to the correct model. For each
of these starting values, the algorithm is iterated until
convergence is reached. The estimates Ψ̂hybrid

G of the
parameters in the Gaussian mixture model are then given
by the set of estimated parameters corresponding to the
model with the maximum likelihood.

A direct consequence of the prior knowledge included
into the hybrid method by equation (4) is that the gth

component in the Gaussian mixture model is now al-
ways supposed to correspond to atomic columns with g
atoms. Therefore, the number of components G will be
called the “library length” from here on. Missing com-
ponents are attributed a mixing proportion πg = 0 by the
hybrid method, and can therefore be easily recognised,
whereas they are simply not estimated by the statistics-
based method. This is an advantage, since in a real
nanostructure it is quite feasible that no single atoms are
present around the edge. The first non-zero component
could therefore easily be at two or three atoms.

The above described algorithm provides atom-counts
for a given library length G. Unfortunately this library
length G is not known beforehand. In principle, a large
enough library length can be used to obtain the same cor-
rect model, since mixing proportions of components that
exceed the maximum thickness can be estimated zero.
However, in practice, a smaller scaling parameter a in
combination with non-zero proportions often results in a
better fit of the Gaussian mixture model to the underly-
ing scattering cross sections. The resulting model has a
higher likelihood, but is not the correct model. A selec-
tion criterion therefore needs to be used to determine the
physically meaningful library length, required to estim-
ate the correct probability distribution. Such a criterion
includes a likelihood term, as well as a penalty term.
Many different information criteria exist, accounting for
the complexity of the estimated model in a different man-
ner [32]. The Integrated Classification Likelihood (ICL)
criterion was shown to have the best performance for
atom-counting [19]:

ICL(G) = −2 logL(Ψ̂hybrid
G ) + 2EN(τ̂) + d logN, (15)

with a negative log likelihood term −2 logL(Ψ̂hybrid
G ),

and a penalty term 2EN(τ̂) + d logN depending on the
sample size N , on the number of parameters d = G + 1
to be estimated, and on the entropy, expressed by

EN(τ̂) = −
G∑

g=1

N∑
n=1

τg

(
V̂n; Ψ̂hybrid

G

)
log τg

(
V̂n; Ψ̂hybrid

G

)
.

(16)
A high library length is penalised, while a higher like-
lihood is favoured, as to obtain a physically meaningful
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trade-off between the goodness of fit and the complexity
of the model. The methodology introduced in this sec-
tion will now be applied to an experimental gold nanorod
in the next section.

3. Counting the number of atoms in a gold nano-
rod

In this section, an experimental HAADF STEM im-
age of a gold (Au) nanorod will be analysed in order
to illustrate the methodology of the hybrid method for
atom-counting. The number of atoms in this Au nanorod
could already be counted reliably using the statistics-
based atom-counting method [20], as an agreement be-
tween independent image simulations and the estimated
locations was then found within the expected 5%-10%
error range [20, 22, 35]. Therefore, this well-conditioned
experimental example can be used to validate the results
obtained with the hybrid method. The image was recor-
ded along the [100] zone axis at the QuAntEM, a double
corrected FEI Titan3 working at 300 kV, and is shown
in figure 2a.

The scattering cross sections calculated from the re-
fined model of the experimental image are shown in fig-
ure 2b. In an ideal case, we would observe separated
components, corresponding to the different thicknesses.
However, due to the unavoidable presence of noise, these
components are broadened and they therefore overlap
each other. This broadening is described by the prob-
ability distribution given by equation (6)-(7). Such a
probability distribution is then estimated for each library
length ranging between 1 and 100. The values of the ICL
criterion, given by equation (15), for each of these library
lengths are evaluated in figure 2c. The top axis indicates
the estimated scaling parameter corresponding to the
models at different library lengths. In this example, the
minimum of interest occurs at a library length equal to
51, corresponding to a scaling parameter of a = 0.99, re-
flecting the high accuracy of the measured experimental
parameters. The estimated probability distribution at
this library length is shown as a full black curve in fig-
ure 2b. The individual components are shown in colour,
corresponding to the number of atoms per column. In
figure 2d, each atomic column was assigned the number
of atoms corresponding to the highest probability based
on the estimated probability distribution from figure 2b.

The interpretation of the ICL criterion obtained by
the hybrid method slightly differs from the interpretation
of the ICL criterion as obtained by the statistics-based
method. We are still looking for a local minimum, but
additional information is provided by the value of the

scaling parameter and can be used to determine the cor-
rect local minimum. Usually, multiple local minima, cor-
responding to different values of the scaling parameter,
are present in the ICL criterion. If the experiment was
conducted carefully, discrepancies between actual and
simulated experimental conditions are expected to be
small, i.e. within the expected 5%-10% error range [20,
22, 35]. This would imply a scaling value approximately
equal to 1. However, it is inadvisable to discard other
local minima based only on their unexpected scaling val-
ues. A local minimum at a scaling value which differs
strongly from 1 can be selected as the minimum of in-
terest when one can explain the nature of these large
discrepancies, e.g. by means of additional image sim-
ulations using different values for sample tilt or inner
detector angle. If this is not the case, the local minimum
corresponding to a scaling value close to 1 is selected as
the minimum of interest.

Note that inclined grey lines with slope logN are ad-
ded to the plot of the ICL criterion. In the ICL cri-
terion in figure 2c, we see linear features where the val-
ues increase parallel to the grey lines, i.e. with the same
slope of logN . These features indicate that the estim-
ated probability distribution for these library lengths is
essentially the same. In fact, the mixing proportions of
components corresponding to a library length exceeding
the first library length of the feature are estimated equal
to zero. As a consequence, the entropy term and the like-
lihood term for these library lengths remain the same,
leaving d logN as the only changing term in the expres-
sion for the ICL criterion given by equation (15). Such
linear features indicate a very good mathematical fit to
the data, and can be used for interpretation of the ICL
minimum. However, such features may not always be
present due to for example large amounts of noise. If
such features appear and coincide with a scaling value
close to 1, we can choose the first library length of the
feature as the minimum of interest.

Figure 2e displays the difference between the atom-
counts obtained by the hybrid method and the statistics-
based method for each atomic column. On average the
number of atoms per column differs by only 1.02 atoms
between both methods. This confirms the reliability of
the results obtained with the hybrid method. In the next
section, the performance of the hybrid method will be
examined in detail and compared to the statistics-based
method.
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(e)

(b)

(c)

2 nm

Figure 2: (a) HAADF STEM image of a gold nanorod [20]. (b) Set of scattering cross sections. The solid black curve
shows the estimated Gaussian mixture model, whereas the coloured curves indicate the individual components. (c) ICL
criterion, with two axes, indicating library length and estimated value of the scaling parameter a. (d) Atom-counts for the
gold nanorod. (e) Difference in atom-counts between the hybrid method and the statistics-based method. Colour online.

4. Possibilities and limitations

4.1. Precision & accuracy of the estimated parameters

In the present section, we evaluate the accuracy and
precision of the estimated parameters. Ultimately, in or-
der to perform a reliable quantitative analysis, the para-
meters of the probability distribution of the scattering
cross sections expressed by equation (6)-(7) need to be
estimated as accurately and precisely as possible. A stat-
istical estimator of a parameter is accurate when the ex-
pectation value of the estimator equals the actual value
of the corresponding parameter. For such an unbiased
estimator, a lower bound on the variance exists, which
expresses the highest attainable precision. This lower
bound on the variance is given by the so-called Cramér-
Rao lower bound [36, 37], defined in Appendix B.

In order to assess the accuracy and precision of the
estimated parameters by the hybrid method, 100 noise
realisations were created by performing random draws
from a Gaussian mixture model with 5 components and
parameters πg, a and σ for which the input values are

given in table 1. For each noise realisation, the mixing
proportions πg for the different components are multi-
nomially distributed with equal probabilities. Further-
more, an equally spaced library is used. The relative
width of the components, defined as the ratio between
the width of the columns σ and the average difference
between the locations of successive components δ, equals
σ/δ = 0.25. The average number of observations per
component equals N/G = 20. The parameters were es-
timated by the hybrid method using starting values for
the mixing proportions πg and the width of the com-
ponents σ given by equations (13) and (14), and mul-
tiple starting values for the scaling parameter as dis-
cussed in section 2. The values of the estimated para-
meters, obtained at the correct library length, are sum-
marised in table 1 and confirm that the parameter es-
timates are accurate, as the input value of each para-
meter is enclosed by the 95% confidence interval on the
sample mean. Table 2 summarises the sample variances
of the parameter estimates for the same sets of scat-
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(a) (b)

Figure 3: Accuracy of the estimated width of the components σ. The estimated width of the components is evaluated as a
function of the true value of σ used in the Gaussian mixture models for (a) the statistics-based method and (b) the hybrid
method. Colour online.

tering cross sections used to validate the accuracy, to-
gether with a 95% confidence interval and the Cramér-
Rao lower bound for each parameter. We conclude that
the Cramér-Rao lower bound is indeed attained, as the
95% confidence intervals on the sample variances include
the Cramér-Rao lower bound for each parameter. Thus,
parameter estimates obtained by the hybrid method are
obtained with the highest possible precision.

Parameter Input Sample 95% confidence
value mean interval

π1 0.2 0.2005 [0.1922; 0.2088]
π2 0.2 0.1979 [0.1901; 0.2057]
π3 0.2 0.1987 [0.1901; 0.2073]
π4 0.2 0.1990 [0.1913; 0.2066]
π5 0.2 0.2039 [0.1951; 0.2128]
a 1 0.9990 [0.9970; 1.0011]
σ 0.25 0.2468 [0.2427; 0.2508]

Table 1: Accuracy of the parameter estimates that de-
termine the Gaussian mixture model estimated by the hybrid
method. The sample means are computed from parameter
estimates obtained from 100 noise realisations of the Gaus-
sian mixture model and compared with the input values of
the model parameters.

An important drawback of the statistics-based method
is the underestimation of the value of the width of the
components σ in case of a small average number of columns
per component N/G [19]. In order to assess the accuracy
of the estimated width of the components, noise realisa-

Parameter CRLB Sample 95% confidence
variance interval

π1 0.0017 0.0018 [0.0013; 0.0023]
π2 0.0018 0.0016 [0.0017; 0.0020]
π3 0.0018 0.0019 [0.0013; 0.0025]
π4 0.0018 0.0015 [0.0015; 0.0019]
π5 0.0017 0.0021 [0.0016; 0.0026]
a 0.000098 0.00011 [0.000089; 0.00014]
σ 0.00044 0.00062 [0.00034; 0.00055]

Table 2: Precision of the parameter estimates that de-
termine the Gaussian mixture model estimated by the hybrid
method. The sample variances are computed from parameter
estimates obtained from 100 noise realisations of the Gaus-
sian mixture model and compared with the Cramér-Rao lower
bound for the model parameters.

tions were again created by performing random draws
from Gaussian mixture models with 10 components, in
the same manner as described before. Different combin-
ations of N/G and σ/δ were used, and 100 noise realisa-
tions were performed for each of these combinations. In
figure 3 the estimated width of the components is evalu-
ated as a function of the true width of the components,
for different values of the average number of columns
per component N/G. Estimated widths are shown for
both the statistics-based method and the hybrid method,
with 95% confidence intervals. We conclude from figure
3 that the hybrid method provides more accurate estim-
ates for the width of the components as compared to
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the statistics-based method, which severely underestim-
ates the width of the components at low values of N/G.
The parameter estimates for the width σ obtained by
the hybrid method are thus more reliable, resulting in
more reliable atom-counts, as compared to the statistics-
based method. Furthermore, this implies that the hybrid
method allows for a more accurate estimate of the relat-
ive width of the components σ/δ, which determines the
overlap between Gaussian components. Therefore, the
precision of the atom-counts themselves can be more ac-
curately predicted, as this is inherently determined by
the amount of overlap between the components.

Figure 4: The average number of columns per component
needed to obtain 50%, 85% or 95% correctly counted atomic
columns by the hybrid method or the statistics-based method,
for a certain relative width of the components. Colour online.

4.2. Atom-counting performance

The atom-counting performance can be quantified by
the percentage of correctly counted atomic columns. The-
refore, we will calculate this percentage obtained by the
hybrid method for different combinations of the average
number of columns per component N/G and the relative
width of the components σ/δ, as well as for the statistics-
based method. The relative width of the components σ/δ
is large when the signal-to-noise ratio is low, as is for ex-
ample the case for low dose images. The average number
of columns per component N/G can be related to the size
of the particle. A small particle corresponds to a small
value ofN/G. The values of σ/δ andN/G determine how
difficult it is to count the number of atoms. They can the-
refore be referred to as the conditions for atom-counting.
The largest improvement in the percentage of correctly
counted atomic columns attained by the hybrid method
is expected at difficult conditions for atom-counting, cor-
responding to noisy images of small nanoparticles.

Noise realisations were created by performing random
draws from Gaussian mixture models with 10 compon-
ents, as described in section 4.1. The values of σ and N

are varied. For each combination, 100 such noise real-
isations were performed. The percentages of correctly
counted atomic columns, after evaluation of the ICL cri-
terion, are displayed in figure 4. The ICL criterion was
evaluated between library lengths 8 and 12. The inter-
pretation of the ICL criterion introduced in section 3
was applied in order to select the minimum of interest.
The average number of columns per component N/G
required to correctly count 50%, 85% and 95% of the
atomic columns is evaluated as a function of the relative
width of the components σ/δ. The percentage of cor-
rectly counted atomic columns increases with increasing
average number of columns per component N/G and de-
creasing relative width of the components σ/δ. However,
the required N/G to reach a given percentage with the
hybrid method is lower than the N/G needed to reach
the same percentage using the statistics-based method
for constant σ/δ. In other words, the hybrid method
does indeed outperform the statistics-based method, es-
pecially for small nanostructures. Note that the percent-
age of correctly counted atomic columns is determined by
the selection of the library length after an evaluation of
the ICL criterion on the one hand, and by the overlap be-
tween the Gaussian components, limiting the precision,
on the other hand. We conclude from the results in fig-
ure 4 that the most significant improvement is achieved
at high values of σ/δ. These results therefore suggest the
possibility of reliably counting the number of atoms in
samples where counting was previously impossible, spe-
cifically in images of small, beam-sensitive particles re-
corded using a lower electron dose. In the next section,
a platinum-iridium nanoparticle recorded using a relat-
ively low electron dose will be analysed using the hybrid
method.

5. Counting the number of atoms in a platinum-
iridium nanoparticle

In the present section, the hybrid method is used to
count the number of atoms in a challenging experimental,
relatively low dose image of a small Pt/Ir particle, shown
in figure 5a and previously already analysed in [33]. The
particle was supported on a three-dimensional carbon
black support and was received in powder form dusted
onto a carbon coated copper grid. The image was taken
at the QuAntEM, a double corrected FEI Titan3 working
at 300 kV. The difference in atomic number between Ir
(Z=77) and Pt (Z=78) is only one, causing a difference
of less than 3% in the scattering cross sections up to 15
atoms in a projected atomic column. Therefore, Pt and
Ir can be analysed together for the purpose of counting
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(a) (d)(b)

(c) (e)

1 nm

Figure 5: (a) Experimental ADF STEM image of a platinum-iridium nanoparticle recorded using a dose of 6.5 · 104

e−/Å2 [33]. (b) Set of scattering cross sections. The solid black curve shows the estimated Gaussian mixture model, whereas
the coloured curves indicate the individual components. (c) ICL criterion, with two axes, indicating library length and
estimated value of the scaling parameter a. (d) Atom-counts for the platinum-iridium nanoparticle. (e) Scattering cross
sections evaluated as a function of the number of atoms per column. Colour online.

the number of atoms per column. Simulated cross sec-
tions were calculated from image simulations assuming
Pt only. Using the statistics-based method, a significant
mismatch between the estimated locations and the sim-
ulated scattering cross sections was found [33]. It was
shown that the statistics-based method underestimates
the model order due to the insufficient electron dose.

Figure 5 summarises the analysis of this relatively
low dose image of the Pt/Ir particle using the hybrid
method. The set of estimated scattering cross sections is
shown in figure 5b. By assessing the ICL criterion as a
function of the library length and the scaling parameter,
the minimum of interest is chosen at the significant local
minimum which occurs at library length 13, as indicated
in figure 5c. The estimated scaling parameter at this
library length is close to the expected value of 1. The
resulting estimated probability distribution of the scat-
tering cross sections is shown in figure 5b by a black
curve. The individual components that compose the dis-
tribution are displayed in different colours. In figure 5d,

each atomic column was assigned the number of atoms
corresponding to the highest probability based on the es-
timated probability distribution. It is clear from figure
5e that a good agreement with the image simulations is
now achieved. This intensity/thickness graph evaluates
the estimated locations by the statistics-based method,
the scaled library values, corresponding to the estimated
locations by the hybrid method, and the library values,
i.e. the simulated scattering cross-sections, as a function
of the number of atoms per column. A mismatch between
estimated cross sections and simulated cross sections is
no longer found by the hybrid method, since the scaling
parameter is estimated almost equal to 1. The hybrid
method therefore enables us to overcome the limitations
of the statistics-based method. Note that the local min-
imum in the ICL criterion at library length 16 should also
be considered. The corresponding scaling parameter of
0.8 can however not be explained. High dose experiments
on the same day confirm that the detector inner angle
was accurately determined and visual interpretation of
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(b)(a) (d)

(e)

(c)

Figure 6: (a) Hypothetical ADF STEM image corresponding to a low electron dose of 103 e−/Å2, based on the platinum-
iridium nanoparticle from figure 5. (b) Set of scattering cross sections. The solid black curve shows the estimated Gaussian
mixture model, whereas the coloured curves indicate the individual components. (c) ICL criterion, with two axes, indicating
library length and estimated value of the scaling parameter a. (d) Atom-counts for the simulated low dose image of a
nanoparticle. (e) Difference in atom-counts between original image and the simulated lower dose image. Colour online.

the image excludes a large sample tilt. Therefore, we
have sufficient arguments to accept the local minimum
at the scaling value closest to 1.

Thus far, we have shown that the hybrid method
enables us to reliably count the number of atoms per
column in an experimental image from which reliable
atom-counting was previously impossible due to an in-
sufficient electron dose. In order to investigate the pos-
sibilities for very low electron doses, a hypothetical low
dose image of a small nanoparticle is now treated with
the hybrid method. This analysis is summarised in fig-
ure 6. The simulated image is obtained by performing a
Poisson distributed random draw from the model fitted
to the Pt/Ir nanoparticles, corresponding to an electron
dose of only 103 e−/Å2. The resulting image is shown
in figure 6a. The estimated scattering cross sections ob-
tained from this image are displayed in figure 6b. Based
on the ICL criterion from figure 6c, the minimum of in-
terest is chosen at a library length of 13, as was also
the case for the original image of the Pt/Ir nanoparticle.

The corresponding scaling parameter is estimated equal
to a = 0.99. The estimated probability distribution at
this library length is shown in figure 6b. The lowering
of the electron dose resulted in a broadening of the com-
ponents estimated in the Gaussian mixture model from
σ/δ = 0.3960±0.0049 to σ/δ = 0.4243±0.0056, resulting
unavoidably in a more limited precision. However, the
correct library length is still retrieved, despite the low
electron dose. Atom-counts are shown in figure 6d. The
atom-counts obtained from the analysis of this low dose
image of the Pt/Ir nanoparticle differ no more than ±1
atom as compared to the results obtained from the ori-
ginal, relatively low dose image of the Pt/Ir nanoparticle,
as shown by the difference map in figure 6e.

We conclude from the results in the present section
that the hybrid method for atom-counting holds promise
for quantitative analysis of challenging, beam-sensitive
nanoparticles, thanks to its ability to overcome chal-
lenges presented by very low electron doses.
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6. Discussion and conclusions

In the present paper, an improved method for atom-
counting from ADF STEM images of monotype crystal-
line nanostructures has been presented. This method
was shown to exceed the limitations of the atom-counting
methods that exist today, by directly combining image
simulations and statistical parameter estimation theory.
The method exploits prior knowledge obtained from im-
age simulations, without suffering from the unknown ac-
curacy of the experimental parameters used in these im-
age simulations. It was shown that the largest progress is
made for low dose images of small nanoparticles, condi-
tions for which the statistics-based method can no longer
obtain reliable atom-counts. This result is confirmed by
the analysis of a small platinum-iridium nanoparticle im-
aged using a relatively low electron dose, which could not
be analysed reliably using the statistics-based method,
and by the successful analysis of a simulated low dose
image.

It should be noted that the description of the per-
formance for atom-counting in section 4 in fact assumes
that the linear scaling relationship between simulated
scattering cross sections and experimental scattering cross
sections accurately describes the combined effect of meas-
urement errors in different experimental input paramet-
ers of the image simulations. However, not all parameters
used to perform the image simulations affect the scat-
tering cross sections in a linear manner. Although it
is shown that this linear scaling relationship provides a
good first approximation, the performance of the hybrid
method may improve by refining this parametric func-
tion. The hybrid method has nonetheless been shown to
be a promising first step towards reliable atom-counting
from low electron dose images of beam-sensitive materi-
als.
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Appendix A. Model-based parameter estimation

An incoherent parametric imaging model to describe
the expectation values of the image intensities of an ADF
STEM image of crystalline nanomaterials is formulated
by a function that is sharply peaked at the positions of
the atomic columns, modelled as a superposition of Gaus-
sian peaks. The expectation value of the image intensity
at pixel (k, l) in the image is therefore given by:

O(rk,l; θ) = ζ+

N∑
n=1

ηn exp

(
− (xk − βxn

)2 + (yl − βyn
)2

2ρ2

)
.

(A.1)
In this expression, ζ is a constant background present in
the image, ρ is the width of the two-dimensional Gaus-
sian peaks, ηn is the height of the nth Gaussian peak, βxn

and βyn
are the x- and y-coordinate of the nth atomic

column, and N is the total number of atomic columns in
the image. The unknown parameters are summarised in
the parameter vector:

θ = (βx1 , ..., βxN
, βy1 , ..., βyN

, ρ, η1, ..., ηN , ζ)T . (A.2)

The intensities belonging to the different atomic columns
can be quantified in two ways. Either the maximum value
of the Gaussian peak is used, or the volume under the
peak, which equals the total intensity of the scattered
electrons. The volume under an estimated Gaussian peak
expresses the so-called scattering cross section:

V̂n = 2πη̂nρ̂
2, (A.3)

with η̂n and ρ̂ the least squares estimates for the para-
meters ηn and ρ from equation (A.1). The scattering
cross sections have been shown to outperform the peak
intensities for atom-counting [38].

Appendix B. Cramér-Rao lower bound

For unbiased estimators, the Cramér-Rao lower bound
defines the lower bound on the variance [36, 37]:

cov(ΨG) ≥ F−1
ΨG

, (B.1)

with ΨG the vector containing the estimators, and FΨG

the Fisher information matrix, which is defined as fol-
lows:

FΨG
= −E

[
∂2 ln p(V; ΨG)

∂ΨG∂ΨT
G

∣∣∣∣∣
ΨG=Ψ0

]
, (B.2)

where E expresses the expectation value. In this expres-
sion, p(V; ΨG) represents the joint probability density
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function, in this case determined by the Gaussian mix-
ture model fmix(V; ΨG), which describes the probability
distribution of the set of scattering cross sections V, and
is determined by the unknown parameters expressed by
the parameter vector ΨG. The vector Ψ0 contains the
actual values of the parameters to be estimated. In prac-
tice, the following integral is numerically integrated:

FΨG
= −N

∫ ∞
−∞

∂2 ln fmix(V ;ΨG)

∂ΨG∂ΨT
G

∣∣∣∣∣
ΨG=Ψ0

fmix(V ;ΨG)dV , (B.3)

with N the total number of columns in the image.
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