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Abstract

In the present paper, the optimal detector design is investigated for both detecting and locating light atoms from high
resolution scanning transmission electron microscopy (HR STEM) images. The principles of detection theory are
used to quantify the probability of error for the detection of light atoms from HR STEM images. To determine the
optimal experiment design for locating light atoms, use is made of the so-called Cramér-Rao Lower Bound (CRLB).
It is investigated if a single optimal design can be found for both the detection and location problem of light atoms.
Furthermore, the incoming electron dose is optimised for both research goals and it is shown that picometre range
precision is feasible for the estimation of the atom positions when using an appropriate incoming electron dose under
the optimal detector settings to detect light atoms.

Keywords: High-resolution scanning transmission electron microscopy (HR STEM), Electron microscope design
and characterisation, Data processing/image processing

1. Introduction

In the past few years, a lot of research has been done
to improve the imaging power to detect light atoms like
oxygen, lithium, and hydrogen, since they play a key-
role in a range of industrial applications such as lithium-
batteries or hydrogen-storage materials. Since material
properties are crucially dependent on the exact atomic
arrangement, an estimation of the atomic column posi-
tions with picometre range precision is needed [1–3].
The performance of a STEM experiment is often eval-
uated qualitatively, which means in terms of direct vi-
sual interpretability. For this purpose, the image con-
trast and signal-to-noise ratio (SNR) are useful criteria.
However, in the past few years, electron microscopy has
evolved toward a quantitative technique, aiming at accu-
rate and precise numbers for the parameters of interest.
If images are interpreted quantitatively, the principles of
statistical parameter estimation theory and statistical de-
tection theory enable one to quantify the attainable pre-
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cision with which atoms can be located and the prob-
ability of error to detect atom columns [1, 4–8]. The
experiment design for which the precision and/or prob-
ability of error is optimal does not necessaraly corre-
spond to the experimental settings leading to the high-
est SNR or the best image contrast. If one interprets the
STEM images quantitatively, reliable quantitative struc-
ture information can be retrieved using (high angle) an-
nular dark field ((HA)ADF) STEM [9–21]. Recently,
advances have been made in the design of new detec-
tors. The use of pixelated detectors enables a high flex-
ibility in the choice of detector settings [22–24]. In this
work, a quantitative analysis will be performed to in-
vestigate where in the detector plane the most sensitive
region is located for both detecting and locating light
atoms, which can help experimentalists when choosing
the appropriate camera length for their experiment. The
ultimate goal is then to obtain quantitatively the opti-
mal experiment design for which the unknown structure
parameters are obtained with the highest possible preci-
sion. In this work, the inner and outer STEM detector
angles are optimised. An appropriate theoretical tool
using statistical detection theory [25] to derive this opti-
mal experiment design in terms of detecting light atoms
was proposed in [26]. The so-called probability of error
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can be derived as a function of the experiment design
when comparing two or more hypotheses, where every
hypothesis corresponds to the presence or absence of a
specific atom type, for which a binary or multiple hy-
pothesis test can be performed. For the computation of
this probability of error, realistic simulations describ-
ing the experimental images can be used [19, 27–31]
together with knowledge about the statistics of the im-
age pixel values. The experimental settings leading to
the lowest probability to decide the wrong hypothesis
then correspond to the optimal experiment design.
One can not only investigate the optimal detector de-
sign in order to detect light atoms, but also derive the
optimal detector settings to optimise the precision with
which the atomic column positions can be estimated.
The attainable precision with which unknown continu-
ous structure parameters can be estimated, can be ob-
tained using the concept of Fisher information. The ul-
timate precision is given by the lowest possible vari-
ance with which an unknown parameter can be esti-
mated from a set of observations of which the proba-
bility distribution function is assumed to be known [32–
34]. An expression for this lower bound on the vari-
ance with which the atomic column positions can be
estimated from HR STEM images can be determined
and is given by the so-called Cramér-Rao Lower Bound
(CRLB) [1, 33–36]. Since the CRLB is independent of
the used estimation method, it gives the intrinsic limit
to the precision that can be obtained. This lower bound
is a function of the microscope settings, of which at
least some are adjustable, like the annular STEM de-
tector and probe settings. The optimal statistical exper-
iment design of a HR STEM experiment for locating
light atoms is then given by the microscope settings that
minimise the CRLB [37, 38].

The goal in this work is to investigate if both
detecting and locating light atoms with the highest
possible precision would lead to the same optimal
experiment design. To illustrate the concept, the
problem of suggesting optimal detector settings to
detect the oxygen positions in SrTiO3 is considered,
as well as detecting the lithium atoms in LiV2O4.
Therefore, a binary hypothesis test is performed where
both hypotheses correspond to either the presence or
absence of the oxygen or lithium atoms in the crystal.
After optimal experiment designs have been obtained
for the detection of the oxygen and lithium columns,
a detailed simulation study is performed for the same
crystals SrTiO3 and LiV2O4, where the question is
for which detector design the oxygen and lithium
columns can be located from HR STEM images with
the ultimate precision. Furthermore, both research

questions are investigated as a function of the incoming
electron dose. This allows one to investigate which
electron dose is ultimately required to detect and locate
light atoms with sufficient statistical significance.

The paper is organised as follows: the probability
function of the observations, which is needed to calcu-
late the probability of error and the CRLB, is introduced
in Section 2. In Section 3, the procedure to optimise
the experiment design is explained and discussed, us-
ing both the probability of error and the CRLB as opti-
mality criteria. The results for the optimal experiment
design are given in Section 4 for the detection of light
atomic columns, and in Section 5 for locating the atoms.
In Section 6, the results are discussed and in Section 7
conclusions are drawn.

2. The probability function of the observations

Every STEM experiment will contain certain inher-
ent fluctuations. Therefore, different sets of STEM ob-
servations will always slightly differ, although they are
made under the same imaging conditions. To describe
this stochastic behaviour, we can model the observa-
tions as stochastic variables, which are defined by their
probability (density) function (P(D)F) [34]. When as-
suming that the STEM observations are statistically in-
dependent electron counting results, this PF can be ac-
curately modelled as a Poisson distribution. Consider a
set of NM observations {wnm |n = 1, ...,N; m = 1, ...,M},
where the index nm corresponds to the probe at position
(xn, ym)T . The probability that the observation wnm is
equal to ωnm is given by [39]:

λωnm
nm

ωnm!
exp (−λnm), (1)

where the parameter λnm = Inm · D · ΔxΔy corresponds
to the expectation values of the pixel intensities of the
STEM image, with D the incoming electron dose per
unit area,ΔxΔy the pixel area, and Inm the expected frac-
tion of incoming electrons detected at the corresponding
probe position. In general, these expectation models can
be computed using prior knowledge of a given input ma-
terial’s structure and a given set of microscope param-
eters with software that allows one to simulate STEM
images. In this work, use will be made of the STEMsim
software developed by A. Rosenauer [28]. Since the
pixel values in a STEM image are assumed to be statis-
tically independent, the probability that a set of obser-
vations w = (w11...wNM)T is equal to ω = (ω11...ωNM)T

is equal to the product of all probabilities given by Eq.
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(1):

pw(ω) =
N∏

n=1

M∏
m=1

λωnm
nm

ωnm!
exp (−λnm) . (2)

3. Optimal experiment design

3.1. Statistical detection theory: detecting atoms

When one is considering the problem of detecting
light atoms from HR STEM images, the question is if
a specific atom is present or absent in the STEM image.
This can be translated into a binary hypothesis test of
which the hypotheses are given by:

H0 : Z = Z1

H1 : Z ∈ ∅ (3)

whereH0 is referred to as the null hypothesis, in which
the atomic number Z equals a specific value Z1, andH1

as the alternative hypothesis describing the absence of
an atom of any type. The theory for binary hypothesis
testing is derived in [26] for the detection of light atoms
and for readability of this work, this theoretical back-
ground is presented in Appendix A. In [26], it is shown
that the probability of deciding the wrong hypothesis,
i.e. the probability of error, is approximately given by:

Pe =
1
2

[
Φ

(−μH1

σH1

)
+ Φ

(
μH0

σH0

)]
(4)

with

μHi =

N∑
n=1

M∑
m=1

λHi ,nm ln
λH1,nm

λH0,nm
− λH1,nm + λH0,nm, (5)

σHi
2 =

N∑
n=1

M∑
m=1

λHi ,nm

(
ln
λH1,nm

λH0,nm

)2

. (6)

In the expression for Pe, Φ(.) is the cumulative distri-
bution function of the standard normal distribution, μHi

the expected value and σHi the standard deviation.

3.2. The Cramér-Rao Lower Bound: attainable preci-
sion for locating atoms

The goal in experiment design is to find the experi-
mental settings that achieve the ultimate precision from
a given set of observations. If one now wants to deter-
mine the position of a certain atomic column from a HR
STEM image with the highest possible precision, the
concept of Fisher information has to be used instead of
detection theory. Using this concept, the most sensitive

region of the detector can be found, as well as the pre-
cise optimal inner and outer detector angles, by inves-
tigating the CRLB as a function of the detector design.
Since the theory of the CRLB is already well clarified in
previous work [33–36], only the expression used in this
paper for locating light atomic columns is given here.
A detailed derivation of the CRLB is presented in Ap-
pendix B.
The CRLB has already been evaluated for locating
atomic columns by Van Aert et al. [1]. However, in that
study only a simple channeling model was considered
for the STEM images which did not include thermal dif-
fuse scattering. In this work, a more realistic simulation
study is performed. In Section 6, it will be discussed if
the same optimal experiment design is obtained based
on these realistic simulations, in comparison with the
results found in [1]. The observable random variable w
carries information about an unknown parameter, which
in this case is the position parameter vector Θ. It is
proven that for the class of unbiased estimators ̂Θ, the
ultimate precision is given by a lower bound on their
variance, the CRLB:

var(Θ̂r) ≥
[
F−1

]
rr
, (7)

where r ∈ {1, ...,R} with R the number of components
of ̂Θ and [F−1]rr the rth diagonal element of the inverse
of the Fisher information matrix. In this sense, F −1 rep-
resents a lower bound on the variances of all unbiased
estimators. The matrix F−1 is the CRLB on the variance
of ̂Θ. If we consider the position parameter vector Θ
and the joint Poisson probability function for the pixel
intensities in a STEM image given by Eq. (2), it can be
shown that the elements of the Fisher information ma-
trix are given by [1]:

Frs =

N∑
n=1

M∑
m=1

1
λnm

∂λnm

∂Θr

∂λnm

∂Θs
, (8)

with λnm = Inm · D · ΔxΔy, the expectation values of the
pixel intensities of the STEM image. For the estimation
of the position of a single atomic column, the position
parameter vector equals Θ = (Θ x,Θy). Suppose that ̂Θ
is an unbiased estimator of Θ. The CRLB is then the
2-by-2 covariance matrix F −1 whose diagonal elements
define lower bounds on the variances of the elements of
̂Θ. The precision with which the atom column coordi-
nates can be measured is therefore represented by the
diagonal elements of the CRLB. Note that the CRLB
is only defined for continuous parameters, such as the
atomic column position, and can be calculated as a func-
tion of different experimental settings. Therefore, it is
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an excellent tool to optimise the annular STEM detector
in order to achieve the ultimate precision for locating
light atomic columns, but it cannot be defined for the
detection problem since the absence or presence of an
atomic type is not a continuous parameter.

3.3. Practical implementation

As already mentioned before, one can not only inves-
tigate the optimal detector settings to detect light ele-
ments, but also optimise the experiment design in order
to determine the position of the light atomic columns
with the highest possible precision. Therefore, the
CRLB introduced in Section 3.2, was computed as a
function of the inner and outer detector collection an-
gles for the position of the central oxygen column in the
crystal SrTiO3 as well as for the position of the central
lithium column in the crystal LiV2O4. This has been in-
vestigated for the commonly used semi-convergence an-
gles of 20 mrad for SrTiO3 and 21.7 mrad for LiV2O4,
and for different crystal thicknesses, up to 30 nm thick
(i.e. a column of 75 atoms) in the case of SrTiO3, and
up to 4.66 nm thick (i.e. a column of 8 atoms) in the
case of LiV2O4. To calculate the partial derivatives in
the expression for the Fisher information matrix, given
by Eq. (8), different STEM images for the SrTiO3 and
LiV2O4 crystals are simulated, where the central oxy-
gen or lithium column in the field of view is shifted
both in x- and y-direction. The partial derivatives are
then approximated using the finite difference quotient:

∂λnm

∂Θ
≈ λnm(Θ) − λnm(Θ − h)

h
. (9)

The order of magnitude of the shift h is chosen to be
of the same order as the root-mean-square displacement
u, which can be calculated since the Debye-Waller fac-
tors B are known. For the oxygen atoms in SrTiO 3, B
equals 0.7323 Å2 [40, 41], and for the lithium atoms in
LiV2O4, B equals 1.10 Å2 [42]. The root-mean-square
displacement is then given by [43]:

u =

√
B

8π2
. (10)

In this case, the value for the shift h in Eq. (9) is set to
0.1562 Å to determine the position of the oxygen col-
umn in the crystal SrTiO3, which equals the x- and y-
dimension of the pixel size of the simulated crystal. For
a lower value of the shift h, the numerical approxima-
tion of the derivative did not improve any further. In
the case of locating lithium in the crystal LiV2O4 the
value for the shift h is analogously set to 0.1648 Å in

the x-direction and 0.1665 Å in the y-direction, corre-
sponding to the x- and y-dimension of the pixel size of
the simulated LiV2O4 crystal. Results of the CRLB are
presented in Section 5.

3.4. Simulation settings

In the simulations, the Scherzer settings for the spher-
ical aberration and defocus are chosen. The Scherzer
defocus is defined by [44]:

ε = − sign(Cs)
√|Cs|λ, (11)

with λ the electron wavelength and C s the spherical
aberration. It can be shown that minimising the aber-
ration function results in an optimal aperture size α for
the probe, given by [45]:

α = 1.41

(
λ

Cs

)1/4

. (12)

By first selecting an experimentally feasible and appro-
priate semi-convergence angle for the probe, one can
thus obtain values for the Scherzer defocus and spheri-
cal aberration for a given accelerating voltage. An ex-
perimentalist, however, will optimise the defocus by eye
and work at a spherical aberration constant of about 1
micron, which is basically the error-bar on the spherical
aberration for aberration-corrected microscopes nowa-
days. The defocus will then typically lie in the range
of the Scherzer defocus corresponding to this spherical
aberration of 1 micron, which equals -1.4 nm for an ac-
celeration voltage of 300 kV, following Eq. (11). There-
fore, the Scherzer defocus corresponding to a spherical
aberration of 1 micron and an acceleration voltage of
300 kV are chosen in this work combined with the of-
ten used convergence angle of 21.7 mrad in the case of
LiV2O4, and 20 mrad in the case of SrTiO3.
The influence of the crystal thickness on the optimal ex-
periment design, both for detecting and locating light
atoms is investigated. Therefore, simulated STEM im-
ages at three different thicknesses are compared. For de-
tecting and locating the pure lithium column in LiV 2O4

viewed from the [110] direction, the three different
thicknesses of 1.17 nm, 2.91 nm and 4.66 nm, corre-
sponding to a column of respectively 2, 5 and 8 Li atoms
thick, are compared. For detecting and locating the oxy-
gen column in SrTiO3, the three thicknesses of 1.95 nm,
3.91 nm and 29.29 nm are compared, corresponding to
a column of 5, 10 and 75 Sr atoms thick, respectively.
All other simulation parameters, given in Table 1 for the
LiV2O4 crystal and in Table 2 for the SrTiO3 crystal,
are kept constant in order to independently investigate
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the influence of the crystal thickness. STEM images are
then simulated for a whole range of detector angles, and
for the different crystal thicknesses.
The optimal experiment design has been investigated
with the STEMsim software [28] using absorptive po-
tential multislice simulations. Although frozen lattice
simulations are in principle more accurate, only small
deviations in the probability of error are found for thick-
nesses of 23 nm and larger. The probability of error
to detect a pure oxygen column in SrTiO3 is compared
when using either absorptive potential or frozen lattice
simulations. The results of this comparison are pre-
sented in Appendix C.
Since we perform a purely theoretical simulation study,
it is assumed that the detector is always centered around
the optical axis. In practice, however, this may not al-
ways be the case. A small displacement away from the
optical axis of the detector can have an influence on
the accuracy of the measurement [46, 47], which has
to be taken into account in image simulations, in the
case when one wants to compare directly with the ex-
periment.
The probability of error for a binary hypothesis test was
evaluated and minimised in order to obtain the optimal
design for the detection of oxygen from a HR STEM
image of the crystal SrTiO3, as well as the detection of
lithium from a HR STEM image of the crystal LiV2O4.
Results for the optimal design to detect light atoms are
presented in Section 4.

4. Optimal design to detect light atoms

The results of an elaborate simulation study will now
be presented. This study has been performed to min-
imise the probability of error defined in Section 3.1 in
order to optimise the inner and outer detector radii of an
annular STEM detector to detect light atoms.

4.1. Detecting Li in LiV2O4

The probability of error for the detection of the light
lithium atomic column in a LiV2O4 crystal was com-
puted for a whole range of detector inner and outer an-
gles, for three different crystal thicknesses and an in-
coming electron dose of 105 e−/Å2. The parameters
used for the simulation of LiV2O4, viewed from the
[110] direction, are listed in Table 1. The results of the
probability of error for the detection of Li in LiV 2O4

are shown in Fig. 1. In Fig. 1, the optimal inner and
outer detector angles to detect the lithium column are
determined by the blue region where the probability of
error is minimal. From the results shown in Fig. 1, we

can see that the same optimal detector range is obtained
for the three thicknesses under study. It can also be seen
that the probability of error is lower for detecting atomic
columns in a thicker sample region, which means that
it is becomes easier to detect a lithium column when
the sample region becomes thicker, what could be ex-
pected. The results of the probability of error show us
which area in the detection plane is most sensitive for
detecting light elements. From the results shown in Fig.
1, it is clear that the overall optimal detector range for
the detection of light elements is the low angle annu-
lar dark field (LAADF) STEM regime, where the inner
detector radius is slightly larger than the probe semi-
convergence angle of 21.7 mrad. Also local optima are
found in the annular bright field (ABF) STEM regime,
where the inner and outer detector radii are both lying
within the illumination cone. This was also suggested
elsewhere [26, 42, 48–52].

4.2. Detecting O in SrTiO3

The simulation parameters which are used for SrTiO3

for a spherical aberration-corrected microscope are
listed in Table 2. The results for the probability of
error using a binary hypothesis test in order to detect
oxygen in the crystal SrTiO3 from a HR STEM image
are shown in Fig. 2 for three different thicknesses and
for an incoming electron dose of 104 e−/Å2. From the
results shown in Fig. 2, it is clear that for thin crys-
tals the optimal detector collection range correspond-
ing to the regime of minimum probability of error is
LAADF STEM, which means that the optimal inner de-
tector angle is only slightly larger than the probe semi-
convergence angle. There is also a local optimum in
the ABF STEM region, where both the inner and outer
detector radius are lying within the illumination cone.
For thicker crystals, we can see that the optimal region
broadens and the optima in the ABF and LAADF STEM
regions start to overlap. Moreover, it can be seen that for
the thicker crystal, there is a broader range where the
probability of error is very low and does not change a
lot, which indicates that it becomes less critical to opti-
mise the detector design if one wants to detect an atomic
column in a thicker sample region.

5. Optimal design to locate light atoms

In this section, results for the optimal design to lo-
cate light atomic columns with the highest precision
will be given. This analysis is based on the CRLB, de-
fined in Section 3.2. To calculate this lower bound on
the variance of the estimated atomic column position,
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Parameter Symbol Value

Defocus ε (nm) -1.4
Spherical aberration Cs (mm) 0.001
Slice thickness zslice (Å) 1.46
Debye-Waller factor Li B (Å2) 1.1
Debye-Waller factor V B (Å2) 0.01
Debye-Waller factor O B (Å2) 0.48
Acceleration voltage V (kV) 300
Semi-convergence angle α (mrad) 21.7
Probe sampling distance (x-direction) Δx (Å) 0.165
Probe sampling distance (y-direction) Δy (Å) 0.167
Incident electron dose D (e−/Å2) 105

FWHM of the source image FWHMs (Å) 0.7
Total number of scanned pixels N × M 50 × 35

Table 1: Parameter values used in the STEMsim software for the simulation of LiV2O4.

a simulation study was performed for both the crystals
LiV2O4 and SrTiO3 of which the simulation parameters
are given in Table 1 and Table 2, respectively. The pre-
cision with which the atomic column coordinates can be
measured is represented by the diagonal elements of the
CRLB. Since both diagonal elements of the CRLB are
equivalent for the investigated crystals in this paper, the
first one is chosen as optimality criterion, corresponding
to the lower bound on the variance of the x-coordinate
of the atomic column position. The highest precision to
locate a column is then given by the lower bound on the
standard deviation of the estimated atomic column po-
sition, defined by the square-root of the criterion that is
minimised,

√
CRLB11.

5.1. Locating Li in LiV2O4

The ultimate precision with which the position of the
pure lithium column in LiV2O4 can be determined was
calculated for an incoming electron dose of 10 5e−/Å2,
for a whole range of inner and outer detector angles for
the annular STEM detector. This electron dose was cho-
sen in order to retrieve an ultimate precision that lies in
the picometre range as desired. The detector settings
leading to the minimum value of the

√
CRLB11 thus re-

sult in the ultimate precision to locate the lithium col-
umn. Results for this ultimate precision are shown in
Fig. 3 for the same thicknesses that were investigated
for the detection problem in Section 4.1. From the re-
sults shown in Fig. 3, it is clear that the overall optimal
detector collection range to locate light atomic columns
is LAADF STEM, which was also the optimal detector
range for the detection of light elements. Local optima

are again found in the ABF STEM regime for the dif-
ferent investigated thicknesses. From Fig. 3 it is also
clear that a better precision can be obtained for locating
an atomic column in a thicker sample region. This can
intuitively be understood since it is easier to determine
the position of a column with a higher contrast.

5.2. Locating O in S rT iO3

The ultimate precision with which the position of the
pure oxygen column in SrTiO3 can be determined, was
calculated for an incoming electron dose of 10 4e−/Å2,
for a whole range of inner and outer detector angles
for the annular STEM detector. A lower dose here suf-
fices in order to obtain picometre precision, since oxy-
gen is a heavier atom and thus gives a higher scattered
intensity as compared to lithium. In Fig. 4 it can be
seen that the overall optimal detector range is again
LAADF STEM, while local optima are present in the
ABF STEM regime, at least up to a thickness of 4
nm. For thicker sample regions however, both regimes
broaden and start to overlap and the true optimum be-
comes ABF STEM. From the results shown in Fig. 4,
we can also see that a better precision can be obtained
when locating an atomic column in a thicker sample re-
gion.
In addition to the results shown in Fig. 3 and 4, a line
scan is plotted of the attainable precision as a function
of thickness at the optimal detector design, to better vi-
sualise the attained picometre range precision. These
line scans are shown in Fig. 5(a) and 5(b) for the same
electron doses that were used in Fig. 3 and 4, respec-
tively. In Fig. 5(a) the ultimate precision to locate the
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Figure 5: The ultimate precision to locate a column for an incoming
electron dose D as a function of thickness, at the optimal detector
settings for detecting and locating the column.

lithium column in LiV2O4 is plotted at the obtained op-
timal detector design, as a function of thickness. In Fig.
5(b) the ultimate precision is plotted to locate the pure
O column in SrTiO3 as a function of thickness, at the
two optimal settings that were derived for the different
considered crystal thicknesses. It can be seen from this
figure that from a thickness of 5 nm and larger, the opti-
mal detector setting shifts from LAADF STEM to ABF
STEM.

6. Discussion

6.1. Detecting versus locating

Although a single optimum is found for both simula-
tion studies in order to detect and locate light atoms, it
can be seen by comparing either Figs. 1 and 3 or Figs. 2
and 4, that the optimal detector region becomes broader
in the results of the precision, as compared to the op-
timal detector region where the probability of error is

minimal. This suggests that it is more critical to op-
timise the experiment design for detecting than for lo-
cating light atoms. Therefore, as soon as the experi-
ment design is optimised in order to detect light atomic
columns, these columns can also be located with a high
precision.

6.2. Dose effect
The detectability of atomic columns as well as the

precision to locate them do not only depend on the de-
tector settings, but also on the number of incident elec-
trons. Although the optimal detector settings are inde-
pendent of the electron dose, the probability of error
and the attainable precision can be further analysed as a
function of the incident electron dose, both for detecting
and locating atomic columns. Especially for light ele-
ment crystals, the effect of radiation damage is almost
unavoidable and therefore one might be interested to in-
vestigate the lowest possible incident electron dose, for
which the detectability as well as the precision for lo-
cating the light atoms are sufficiently high.
From the previous results of the probability of error and
the ultimate precision, we obtained a single optimal de-
tector design to both detect and locate a lithium column
in LiV2O4, as desired. In Fig. 6, results of the proba-
bility of error and the ultimate precision as a function
of incoming electron dose are shown, both at the re-
spective optimal detector settings for the different thick-
nesses. From the results shown in Fig. 6(a), it is clear
that the probability to choose the wrong hypothesis de-
creases for an increasing electron dose, as expected. If
one finds a maximum probability of error of 10% ac-
ceptable, an incident electron dose of about 5500 e−/Å2

would be sufficient when using the optimal detector set-
tings for detecting Li in LiV2O4 for a column of 4.66
nm. From Fig. 6(a), it can also be seen that a higher
incoming electron dose is necessary if one wants to de-
tect a lithium column in a very thin sample region with a
sufficiently low probability of error. About 7900 incom-
ing electrons per Å2 are therefore necessary to detect a
lithium column of 2.91 nm thick, in order to still obtain
a maximum probability of error of 15 %.
Also, for locating the lithium columns in LiV2O4 one
can look at the effect of the electron dose on the attain-
able precision. Therefore, for the three different thick-
nesses the ultimate precision is investigated as a func-
tion of the electron dose at the optimal detector settings.
Results are shown in Fig. 6(b). It can be seen that for an
electron dose of 105e−/Å2, the ultimate precision lies in
the picometre range as desired when the optimal detec-
tor setting for the respective crystal thicknesses is ap-
plied. If we compare Figs. 6(a) and 6(b), we propose
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Figure 6: (a) The probability of error to detect a Li column in LiV2O4
and (b) the ultimate precision to locate a lithium column in LiV2O4,
both as a function of the electron dose for three different crystal thick-
nesses: 1.17 nm, 2.91 nm and 4.66 nm at the optimal detector settings
for detecting and locating Li.

105e−/Å2 as optimal incoming electron dose, since at
this incoming dose picometre precision for locating the
lithium column in LiV2O4 is obtained, at least for thick-
nesses of 2.91 nm or larger, while for the detection of
lithium in LiV2O4 a very low probability of error of
maximum 15% is found, even for a column in a very
thin sample region.

Also for the simulation study of SrTiO3 the probabil-
ity of error and the attainable precision can be investi-
gated as a function of the incident electron dose. In the
same way as for the LiV2O4 crystal, results are shown
in Figs. 7(a) and 7(b) for respectively the probability of

error and the ultimate precision as functions of incom-
ing electron dose, under the optimal detector settings
for the different investigated crystal thicknesses. For de-
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Figure 7: (a) The probability of error to detect the central O column
in SrTiO3 and (b) the ultimate precision to locate the O column in
SrTiO3, both as a function of the electron dose for three different
crystal thicknesses: 1.95 nm, 3.91 nm and 29.29 nm at the optimal
detector settings for detecting and locating O.

tecting and locating the central O column, the probabil-
ity of error and the ultimate precision both lead to the
same optimal detector range as desired. Both quanti-
ties also decrease as a function of the incoming electron
dose. From the results shown in Fig. 7, it is clear that a
very low probability of error is already obtainable for an
incoming dose of about 103e−/Å2. However, a higher
dose of 104e−/Å2 is necessary if one also wants to have
picometre precision for the oxygen column position in
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the SrTiO3 crystal.
From these results, it can be shown that one can tune
the incoming electron dose in such a way that a suffi-
ciently low probability of error is attained in order to
detect a light atomic column, and moreover a high pre-
cision on the atomic column position is retrieved. From
the results shown in Figs. 6 and 7 it is also clear that
the thicker the sample region, the easier it is to detect
and locate the atomic column, which is an expected re-
sult. Note that in this work, the fundamental counting-
statistics limit is established, while in a real experiment
the presence of scan noise and other instabilities occur
which will make this ideal situation unlikely to be rou-
tinely realised.

7. Conclusions

In this paper, the limits to the precision with which
light atoms can be detected and located from HR STEM
images, are investigated. It is proposed to use statistical
detection theory in order to optimise the detector design
for the detection problem. To study the optimal design
to locate light elements, use is made of the concept of
Fisher information. With these statistical tools, the most
sensitive regions in the detection plane could be inves-
tigated for both research questions, which can be use-
ful for experimentalists when choosing the appropriate
camera length for their experiment.
For the detection of light elements from HR STEM im-
ages it is found that the thicker the sample region be-
comes, the easier it will be to detect the light atomic
column. The optimal detector design depends on the in-
vestigated material and the crystal thickness and corre-
sponds to either ABF STEM, with the detection range
lying within the illumination cone of the probe, or
LAADF STEM, with an inner detector angle slightly
larger than the probe semi-convergence angle. Both op-
timal regions start to overlap when the sample region
becomes thicker.
The optimal settings obtained for locating the light Li
and O atoms in the crystals LiV2O4 and SrTiO3 are
consistent with the optimal settings for the detection
of these light atoms in the same crystals. This means
that by comparing the detectability with the precision
for the locating problem as a function of incoming elec-
tron dose, a single optimum is found for which the light
element can be detected with a low probability of error
and also located with a precision in the picometre range.
This optimal incoming electron dose however depends
on the crystal structure and thickness. For detecting and
locating either Li in LiV2O4 or O in SrTiO3 we propose
an incoming electron dose of the order of 10 5e−/Å2 or

104e−/Å2 respectively, under the optimal detector set-
tings. Finally, it is also shown for increasing crystal
thicknesses that the optimal detector range for the de-
tection of light elements shifts from the LAADF STEM
to the ABF STEM regime and the total optimal range
also broadens.
In conclusion, the proposed methods can be applied to a
wide range of materials applications in order to provide
objective suggestions for the inner and outer angle of the
annular STEM detector in order to both detect specific
atoms with the lowest probability of error, and locate
atomic columns with the highest precision. In future
work, the present analysis will be extended to include
also the effect of strain as this may have an influence on
the choice of proposed detector settings [53].
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Appendix A. Binary hypothesis testing

To detect a certain atom type in a STEM image, a
binary hypothesis test can be used in which only two
possible hypotheses are considered, namely whether the
light atom is present or absent. The hypotheses of the
binary hypothesis test for the atomic number Z are then
given by:

H0 : Z = Z1

H1 : Z ∈ ∅ (13)

whereH0 is referred to as the null hypothesis andH1 as
the alternative hypothesis describing the absence of an
atom of any type. In order to express a prior belief in the
likelihood of the hypotheses, we assume that the prior
probabilities P (H0) and P (H1) associated with these
hypotheses are known. If both hypotheses are equally
likely it is reasonable to assign equal prior probabilities
of 1/2. Following the quantitative method explained in
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[26], the goal is now to quantify the probability of as-
signing the wrong hypothesis. In a so-called Bayesian
approach, this probability of error Pe is defined as:

Pe = P (H0|H1) P (H1) + P (H1|H0) P (H0) (14)

with P
(
Hi|H j

)
the conditional probability of deciding

Hi whileH j is true. Using criterion (14), the two possi-
ble errors are weighted appropriately to yield an overall
error measure. Decision rules are now defined such that
the probability of error is minimised. It is shown in [25]
that one therefore should decideH1 if

pw(w;H1)
pw(w;H0)

>
P (H0)
P (H1)

= γ, (15)

otherwise H0 is decided. In this expression, pw(w;Hi)
is the conditional joint probability function (PF)
pw(ω;Hi) assumingHi to be true, evaluated at the avail-
able observations w. For equal prior probabilities of
1/2, it is clear that γ in Eq. (15) corresponds to 1. We
then decideH1 if

ln LR(w) ≡ ln

(
pw(w;H1)
pw(w;H0)

)
> ln(1) = 0, (16)

otherwiseH0 is decided. This corresponds to choosing
the hypothesis for which the log-likelihood function is
maximal. The function LR(w) is called the likelihood
ratio since it indicates for each set of observations w
the likelihood of H1 versus the likelihood of H0. The
left-hand side of Eq. (16) is termed the log-likelihood
ratio, which can now be used to rewrite the probability
of error Pe defined by Eq. (14), given the decision rule
of Eq. (16):

Pe =
1
2

P (ln LR(w) < 0|H1) +
1
2

P (ln LR(w) > 0|H0) .

(17)
Since the pixel values in a STEM image are assumed to
be independent, the probability that a set of observations
equals {ωnm |n = 1, ...,N; m = 1, ...,M} is the product of
all probabilities given by Eq. (1):

pw(ω;Hi) =
N∏

n=1

M∏
m=1

λωnm
nm

ωnm!
exp (−λnm) (18)

Using this conditional joint PF, the log-likelihood ratio
defined by Eq. (16) can be rewritten as

ln LR(w) =
N∑

n=1

M∑
m=1

wnm ln

(
λH1,nm

λH0,nm

)
− λH1,nm + λH0,nm.

(19)

Following the central limit theorem, the log-likelihood
ratio tends to be normally distributed. For STEM im-
ages the expected value μ and variance σ2 characteris-
ing this normal distribution of ln LR(ω), can be com-
puted from Eq. (19) when assuming H i to be true, giv-
ing the following results:

μHi =

N∑
n=1

M∑
m=1

λHi ,nm ln
λH1,nm

λH0,nm
− λH1,nm + λH0,nm,

(20)

σHi
2 =

N∑
n=1

M∑
m=1

λHi ,nm

(
ln
λH1,nm

λH0,nm

)2

. (21)

In this derivation, use is made of the property that the
variance of a Poisson distributed variable equals its ex-
pectation value. The explicit description of the distribu-
tion of the log-likelihood ratio now enables us to unam-
biguously compute the probability of error given by Eq.
(17), resulting in the following general expression:

Pe =
1
2

[
Φ

(−μH1

σH1

)
+ Φ

(
μH0

σH0

)]
(22)

with Φ(·) the cumulative distribution function of the
standard normal distribution.

Appendix B. The Cramér-Rao Lower Bound

It is proven that for the class of unbiased estimators,
the ultimate precision is given by a lower bound on their
variance, the CRLB [33–36]. Consider pw(ω;Θ), the
joint probability (density) function of a set of observa-
tions w = (w11, . . . ,wNM)T . An example of this func-
tion is given by Eq. (18) for the pixel intensities in a
STEM image. The so-called Fisher information matrix
measuring the amount of information that an observable
random variable carries about an unknown parameter
vectorΘ ∈ RR, can then be defined as follows:

F = −E
[
∂2 ln pw (ω;Θ)

∂Θ ∂ΘT

]
, (23)

which is an R×R matrix. The expression between square
brackets gives the Hessian matrix of the logarithm of the
joint probability (density) function of which the (r, s)th
element is given by ∂2 ln pw(ω;Θ)/∂Θr∂Θs. The Fisher
information represents the expected value of the ob-
served information and is defined as the variance of the
so-called score function, i.e. the derivative of the log-
likelihood function with respect to the unknown param-
eters. Use of the concept of Fisher information allows
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one to determine the highest precision, that is, the low-
est variance, with which a parameter can be estimated
unbiasedly. Suppose that Θ̂ is any unbiased estimator
of Θ, that is, E[Θ̂] = Θ. Then it can be shown [32] that
under general conditions the covariance matrix cov( Θ̂)
of Θ̂ satisfies

cov
(
Θ̂

)
≥ F−1, (24)

so that cov(Θ̂)−F−1 is positive semi-definite and conse-
quently its diagonal elements cannot be negative. This
means that the diagonal elements of cov

(
Θ̂

)
, that is, the

actual variances of Θ̂1, ..., Θ̂R are larger than or equal to
the corresponding diagonal elements of F −1:

var(Θ̂r) ≥
[
F−1

]
rr
, (25)

where r ∈ {1, ...,R}, with R the number of components
of Θ̂ and [F−1]rr the rth diagonal element of the inverse
of the Fisher information matrix. In this sense, F −1 rep-
resents a lower bound for the variances of all unbiased
estimators Θ̂. The matrix F−1 is the CRLB on the vari-
ance of Θ̂. It can be shown that there exists an estimator
that achieves the CRLB at least asymptotically, that is,
for an increasing number of observations. This estima-
tor is the Maximum Likelihood (ML) estimator [8]. In
electron microscopy, the number of observations is usu-
ally sufficiently large for the asymptotic properties of
the ML estimator to apply and the use of this estimator
is therefore highly recommended in quantitative elec-
tron microscopy [6].
If we consider the position parameter vector Θ and the
joint Poisson probability function for the pixel intensi-
ties in a STEM image given by Eq. (18), it can be shown
that Eq. (23) for the Fisher information matrix reduces
to:

Frs =
∑

n

∑
m

1
λnm

∂λnm

∂Θr

∂λnm

∂Θs
, (26)

where the parameter λnm = Inm · D · ΔxΔy corresponds
to the expectation values for the pixel intensities of the
STEM image, with D the incoming electron dose per
Å2, Δx and Δy the x- and y-dimension of the pixel size,
and Inm the expectation values for the pixel intensities of
the STEM image for one incoming electron per pixel.

Appendix C. Comparison between absorptive poten-
tial and frozen lattice simulations

Absorptive potential simulations are compared with
frozen lattice simulations, for the detection of the pure O
column in SrTiO3 as a function of thickness. The prob-
ability of error at the optimal detector settings that were

obtained for the investigated crystal thicknesses using
absorptive potential simulations are compared with the
result when using frozen lattice simulations, both for
ABF and LAADF STEM and for an incoming electron
dose of 104e−/Å2. Only small differences in proba-
bility of error are found for both simulation methods.
The probability of error only differs for both simulation
methods in the LAADF STEM regime from a thickness
of about 23 nm and larger. It is expected for the thick-
nesses considered in this paper that the optimal detector
design would be the same when performing frozen lat-
tice simulations to optimise the whole detector region.
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Figure 8: The probability of error to detect the central O column in
SrTiO3 for two different detector settings as a function of crystal thick-
ness and for D = 104e−/Å2. The frozen lattice result is the average
over 100 different lattice configurations.
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Figure 1: The probability of error to detect Li in a 1.17 nm, 2.91 nm and 4.66 nm thick LiV2O4 crystal respectively using a binary hypothesis test,
for an incoming electron dose of 105 e−/Å2. On the horizontal axes, the inner detector radius is shown and on the vertical axes the outer detector
radius, both in mrad.

Parameter Symbol Value

Defocus ε (nm) -1.4
Spherical aberration Cs (mm) 0.001
Slice thickness zslice (Å) 1.95
Debye-Waller factor Sr B (Å2) 0.6214
Debye-Waller factor Ti B (Å2) 0.4398
Debye-Waller factor O B (Å2) 0.7323
Acceleration voltage V (kV) 300
Semi-convergence angle α (mrad) 20
Probe sampling distance (x- and y-direction) Δx, Δy (Å) 0.075
Incident electron dose D (e−/Å2) 104

FWHM of the source image FWHM (Å) 0.7
Number of scanned pixels for detecting O N × M 52 × 52
Number of scanned pixels for positioning O N × M 25 × 25

Table 2: Parameter values used in the STEMsim software for the simulation of SrTiO3.
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Figure 2: The probability of error to detect O in a 1.95 nm, 3.91 nm and 29.29 nm thick SrTiO3 crystal using a binary hypothesis test, for an
incoming electron dose of 104 e−/Å2. On the horizontal axes, the inner detector radius is shown and on the vertical axes the outer detector radius,
both in mrad.
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Figure 3: The precision with which the pure Li column can be located in LiV2O4 using a binary hypothesis test for the three different crystal
thicknesses of 1.17 nm, 2.91 nm and 4.66 nm respectively and the same incoming electron dose of 105e−/Å2. On the horizontal axes, the inner
detector radius is shown and on the vertical axes the outer detector radius, both in mrad. Note that the maximum value of the colorbar is set to 1 in
order to visualise the optimal region.
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Figure 4: The precision with which the pure O column can be located in SrTiO3 using a binary hypothesis test for the three different crystal
thicknesses 1.95 nm, 3.91 nm and 29.29 nm respectively and the same incoming electron dose of 104e−/Å2. On the horizontal axes, the inner
detector radius is shown and on the vertical axes the outer detector radius, both in mrad. Note that the maximum value of the colorbar is set to 1 in
order to visualise the optimal region.
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