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Highlights

• STEM images are simulated using the frozen phonon and absorptive potential model.

• Both models are compared in a quantitative manner.

• A comparison is made in terms of integrated intensity and precision.

• For high angles and large thicknesses, the AP model underestimates the integrated inten-
sity.

• Comparable results are predicted for the precision with which atomic columns can be
located.
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Frozen lattice and absorptive model for high angle annular dark
field scanning transmission electron microscopy: a comparison

study in terms of integrated intensity and atomic column position
measurement

M. Alania, I. Lobato, S. Van Aert

Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp,
Belgium

Abstract

In this paper, both the frozen lattice (FL) and the absorptive potential (AP) approximation mod-
els are compared in terms of the integrated intensity and the precision with which atomic columns
can be located from an image acquired using high angle annular dark field (HAADF) scanning
transmission electron microscopy (STEM). The comparison is made for atoms of Cu, Ag, and
Au. The integrated intensity is computed for both an isolated atomic column and an atomic col-
umn inside an FCC structure. The precision has been computed using the so-called Cramér-Rao
Lower Bound (CRLB), which provides a theoretical lower bound on the variance with which pa-
rameters can be estimated. It is shown that the AP model results into accurate measurements for
the integrated intensity only for small detector ranges under relatively low angles and for small
thicknesses. In terms of the attainable precision, both methods show similar results indicating
picometer range precision under realistic experimental conditions.

Keywords: Multislice simulations; Thermal diffuse scattering; Frozen phonon; Frozen lattice;
Absorptive potential; STEM

1. Introduction1

Material properties are strongly connected to the electronic structure, which in turn critically2

depend on the atom positions [1, 2]. It is well known that extremely small changes in the lo-3

cal atomic structure may result into significant changes in their properties [3, 4, 5]. Therefore,4

development of quantitative techniques to measure the atomic arrangement of projected atomic5

columns or individual atoms with sub-picometre precision is required. The enormous progress6

in aberration-corrected scanning transmission electron microscopy (STEM) makes it a powerful7

tool that enables structure characterisation and chemical mapping at the atomic scale with high8

precision [6, 7]. A key imaging mode is high angle annular dark field (HAADF) STEM, where9

the collected signal is sensitive to the structural and chemical composition.10

11

Although modern STEM is capable of reaching sub-Angstrom resolution, quantitative struc-12

ture determination requires accurate image simulations combined with statistical parameter esti-13

mation. The simulations are needed in order to understand the quantum mechanical nature of the14

Preprint submitted to Journal Name September 12, 2017



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

electron-specimen interaction, and statistical parameter estimation is needed in order to quantify15

or more correctly to estimate unknown structure parameters from STEM images. For high-angle16

scattering, the intensity is mainly dominated by Rutherford and thermal diffuse scattering (TDS).17

Therefore, most of the HAADF signal emitted by each atom contributes incoherently [8, 9]. This18

diffuse intensity, resulting from the phonon scattering, can be included in the multislice simu-19

lations by using realistic phonon calculations (frozen phonon) or by the Einstein model (frozen20

lattice (FL)). However, both models require repeated MS calculations for a large number of dif-21

ferent configurations of the specimen. This process requires an enormous amount of computer22

calculations and is time-consuming, especially, for simulations involving high angle scattering23

where a dense sampling is required. As an alternative method, which is computationally less in-24

tensive and which requires only a single configuration for the specimen, the Absorptive Potential25

(AP) approximation model is often included into the MS algorithm [10, 11, 12, 13].26

27

The main objective of this paper is to investigate to which extent the faster but less reliable28

absorptive model can tolerably be used to measure parameters from HAADF STEM images,29

which are often used to quantify the underlying structure. Therefore, in this paper, we will study30

the difference in intensities between the FL and the AP models for HAADF STEM images. First,31

we will compare the total integrated intensity scattered toward the annular STEM detector of an32

isolated atomic column and an atomic column inside an FCC structure. Next, the theoretical33

limit with which an atomic column can be located in two dimensions (2D) based on HAADF34

STEM images is explored. The calculation of the attainable precision is based on the concept35

of Fisher information and expresses a theoretical lower bound on the attainable variance. This36

study has been done for three different atom types, selected as a function of their scattering factor37

amplitude: weakly scattering atoms, e.g. copper (Cu); medium scattering atoms, e.g. silver (Ag);38

and strongly scattering atoms, e.g. gold (Au).39

40

The organisation of this paper is as follow. In section 2, the electron-specimen interaction41

theory, the methods used to simulate STEM images, and the theory for computing the attainable42

precision are described. In section 3, the parameters used for the STEM simulations are sum-43

marised. In Section 4, the numerical results are discussed. Finally, in section 5, conclusions are44

drawn.45

2. Theoretical background46

STEM image simulations are based on a full quantum mechanical treatment of the dynam-47

ical scattering that occurs during electron propagation through the specimen [12]. It has been48

demonstrated that the non-relativistic Schrödinger equation with the relativistically correct mass49

and wavelength yields accurate results for typical energy ranges used in the transmission electron50

microscope [14, 15, 16, 17]. In the paraxial approximation, that is, parallel to the optical axis51

(z-axis), this equation may be written as [18]52

[
∆xy +

4πi
λ

∂

∂z
+

2me
}2

V(r)

]
ψ(r) = 0 (1)

where53

V(r) =
∑

i

Vi(r − ri) (2)
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is the electrostatic Coulomb potential, which is given by the sum of the electrostatic potentials of54

all atoms in the specimen. Furthermore, r = (x, y, z) is a set of three-dimensional (3D) Cartesian55

coordinates, } = h/2π is Planck’s constant divided by 2π, m = γm0 is the relativistic mass of the56

electron, and ∆xy is the Laplacian operator with respect to the x-, and y-axis coordinates. One57

of the most suitable approaches for the numerical calculation of the latter equation is the MS58

method [18].59

2.1. Multislice method60

The MS method developed by Cowley and Moodie [19], and later performed for fast com-61

putation by Ishizuka [11] and Rez [20] is one of the most efficient methods to solve the non-62

relativistic Schrödinger equation given by Eq. (1). In this method, the specimen potential is63

divided into many slices along the electron beam propagation. Each slice has to be thin enough64

to be considered as a weak phase object, which modifies only the phase of the incident wave.65

The potential between two consecutive slices is considered to be zero and the propagation of66

the electron wave within the slice is approximated by the Fresnel propagator, which involves a67

convolution in real space. The electron wave at any depth zn can be calculated by repeated ap-68

plication of this process [11, 18]. The mathematical formalism of the multislice method can be69

expressed as70

ψn+1(R, zn+1) = P(R, ε) ⊗ [T (R, zn)ψn(R, zn)] + O(ε2) (3)

where R = (x, y) is the set of two-dimensional (2D) Cartesian coordinates and ε is the distance71

between the slices zn and zn+1,72

P(R, ε) =
1

iλε
exp

( iπ
λε

(x2 + y2)
)

(4)

is the Fresnel propagator, and73

T (R, zn) = exp

iσ
zn+ε∫

zn

V(R, z′)dz′

 , (5)

is the transmission function for the correspondent slice with σ = 2πmλ/h2 the interaction param-74

eter. The 2D convolution operator (⊗) is defined as75

f (R) ⊗ g(R) =

∫
f (R′)g(R − R′)d2R′. (6)

2.2. Frozen phonon method76

The low-intensity diffuse background in between the normal diffraction peaks is strongly re-77

lated to the atomic vibration [21]. This background intensity that will be referred to as thermal78

diffuse scattering (TDS) produces effects in both diffraction patterns and ADF STEM images. In79

the standard multislice calculation, this effect is neglected [22]. The best way to describe TDS is80

by using the frozen phonon model [21, 23]. This model has been proved in a rigorous way to be81

fully equivalent to a full quantum mechanical treatment of the inelastic phonon scattering [24],82

and has been demonstrated to result in a good match with the experiment even for thicker speci-83

mens [25] and specimens containing heavy atoms [26]. This method is based on a basic classical84

description in which each electron sees a different configuration of atoms displaced from their85

4



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

equilibrium positions. The resulting image intensity is obtained by averaging the simulated im-86

ages performed for a certain number of configurations. The displacement of the atoms due to the87

vibration of the specimen can be calculated by molecular dynamics, DFT calculations, or using88

a random number generator with a Gaussian distribution which is the equivalent to the Einstein89

model (FL) of the density of states for phonons [18].90

91

Assuming that the total specimen potential V(r, t) and the electron wave ψ(r, t) are time-92

dependent, these equations can be written as [24, 27]:93

V(r, t) = 〈V(r)〉 + W(r, t) (7)

ψ(r, t) = 〈ψ(r)〉 + δ(r, t) (8)

where 〈 〉 is the average taken over time t. It is important to note that this should not necessarily94

refer to the real time. In general, it can refer to each state of the object. In repeated multislice95

calculations, it refers to a frozen phonon configuration. From Eqs. (7) and (8), it follows96

〈W(r, t)〉 = 0, (9)
97

〈δ(r, t)〉 = 0. (10)

Using these assumptions, Van Dyck [24] has shown that the frozen phonon model allows us to98

split the total intensity into a coherent and an incoherent contribution. By taking the square of99

Eq. (8) and using Eq. (10), the total intensity at depth z can be calculated as100

〈
|ψ(R, z)|2

〉
= | 〈ψ(R, z)〉 |2 +

〈
|δ(R, z)|2

〉
(11)

Note that the explicit time dependence has been dropped from here on in order to simplify the101

notation. The first term on the right-hand side corresponds to the coherent intensity (i.e. elastic102

scattering) and the second term corresponds to the incoherent intensity (i.e. inelastic scattering),103

respectively. This derivation also holds in Fourier space. Therefore, for each probe located at the104

position (xk, yl), the intensity can be calculated by integrating the total intensity (coherent plus105

incoherent) over the detector:106

fkl =

∫

detector

〈
|Ψ(g, z)|2

〉
d2g, (12)

where g = (gx, gy) is a 2D vector in reciprocal space and Ψ(g, z) is the Fourier transform of107

ψ(R, z).108

2.3. Absorptive potential method109

The absorptive potential approximation [28, 11, 13], computed from e.g. the Weickenmeier110

and Kohl parametrization [29], is a quasi-coherent approach in which the distribution of the111

atomic displacements due to the thermal vibration of the atoms into the specimen is described by112

the convolution of the atomic scattering factors with a Gaussian function. The intensities of the113

STEM image are then calculated by using a modified, complex, projected potential V(R) [11]:114

V(R) = Vr(R) + iVi (R). (13)
5
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The diffuse intensity now results from the presence of an imaginary component Vi(R), which is115

known as the absorptive potential. This potential is evaluated using the absorptive form factor116

defined in [30]. The real component, Vr(R), corresponds to the normal electrostatic potential,117

which can be calculated using the elastic atomic scattering factors tabulated in [31]. Following118

[11], the total intensity can be calculated as the sum of both coherent and TDS contributions for119

each position of the probe (xk, yl):120

fkl = Icoherent
kl + I

T DS

kl . (14)

The coherent contribution is described by121

Icoherent
kl =

∫

detector

|Ψ(g, z)|2d2g, (15)

where Ψ(g, z) is the Fourier transform of ψ(R, z), which can be computed using the multislice122

method where the potential is given by the complex potential defined by Eq. (13). The incoherent123

contribution is given by124

I
T DS

kl =

m∑

n=1

∫
|ψn(R, zn)|2V

T DS

n (R)d2R, (16)

where m refers to the total number of slices, ψn(R, zn) is given by Eq. (3) using the complex125

potential defined by Eq. (13), and V
T DS

n (R) can be derived from the absorptive potential Vi (R)126

following [11].127

2.4. Statistical measurement precision128

Ultimately, the precision with which unknown structure parameters can be estimated, such129

as the 2D positions of projected atom columns or 3D locations of individual atoms, is limited by130

noise. Indeed, due to noise, the pixel values that constitute the experimental images will fluctuate131

randomly from experiment to experiment. These pixel values, which we will from now on refer132

to as observations, can be modelled as random variables, characterized by a joint probability133

function (PF). In a STEM experiment, the observations are counting results, for which the PF can134

be modelled as a Poisson distribution. Based on the PF, an expression for the highest attainable135

precision with which structure parameters of the sample under study can be estimated in an136

unbiased way can be derived using the concept of Fisher information [32, 33]. This expression137

defines a lower bound on the variance of any unbiased estimator of a parameter and is known as138

the Cramér-Rao lower bound (CRLB). Consider a set of stochastic observations wkl, k = 1, ...,K,139

l = 1, ...L. Then, the vector w defined as140

w = (w11, ...,wKL)T (17)

represents the column vector of these observations of dimension K×L, where K×L corresponds141

to the dimension of each image. If the observations are assumed to be statistically independent,142

Poisson distributed variables, the probability that the observation wkl is equal to ωkl is given by143

[34]144

λωkl

kl

ωkl!
exp(−λkl) (18)

with λkl the expected number of detected electrons at pixel (k, l). The expected number of de-145

tected electrons per pixel position (k, l) equals146

6
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λkl = fkl
Iτ
e

(19)

with fkl the fraction of electrons expected to be recorded by the detector, I the probe current in147

ampere, τ the recording dwell time for one pixel, and e = 1.6 × 10−19 C the electron charge.148

These expectation values can be simulated using either the FL model using Eq. (12) or the149

AP model using Eq. (14) within the MS algorithm. When assuming statistically independent150

observations, the probability P(ω; β) that a set of observations w = (w11, ...,wKL)T is equal to151

ω = (ω11, ..., ωKL)T is the product of all the probabilities described by Eq.(18):152

P(ω; β) =

K∏

k=1

L∏

l=1

(λkl)
ωkl

ωkl!
exp (−λkl). (20)

This function is the joint PF of the observations. Since the expectation values depend on the153

choice of the structure of the object under study, the unknown structure parameters β enter154

P(ω; β) via λkl. The expression for the joint PF enables one to compute the CRLB. The Fisher155

information matrix F for estimation of a set of unknown structure parameters β is defined as156

F = −E
[
∂2 ln P(ω; β)
∂β∂βT

]
(21)

where E[ ] is the expectation operator. The expression between brackets is the Hessian matrix of157

ln P(ω; β) of which the (p, q)th element is defined as158

∂2 ln P(ω; β)
∂βp∂βq

(22)

where βp and βq correspond to the p and qth element of the vector β, respectively. The elements159

F(p, q) may be calculated explicitly using Eqs.(19)-(22) [35]:160

F(p, q) =

K∑

k=1

L∑

l=1

1
λkl

∂λkl

∂βp

∂λkl

∂βq
. (23)

It is important to note that the dimension of the Fisher information matrix depends on the number161

of parameters to be estimated. Suppose that β̂ is an unbiased estimator of β. The Cramér-Rao162

inequality then states that [36]163

cov(β̂, β̂) ≥ F−1 (24)

where cov(β̂, β̂) is the variance-covariance matrix of the estimator β̂, defined by its (p, q)th ele-164

ment cov(β̂p, β̂q). Its diagonal elements are thus the variances of the elements of β̂. The matrix165

F−1 is called the Cramér-Rao lower bound on the variance of β̂. The Cramér-Rao inequality166

(24) expresses that the difference between the left-hand and right-hand member is positive semi-167

definite. A property of a semi-definite matrix is that its diagonal elements cannot be negative.168

This means that the diagonal elements of cov(β̂, β̂) will always be larger than or equal to the169

corresponding diagonal elements of the inverse of the Fisher information matrix. Therefore, the170

diagonal elements of F−1 define lower bounds on the variances of the elements of β̂171

var(β̂p) ≥ σ2
βp

= F−1(p, p) (25)

where F−1(p, p) is the (p, p)th element of the inverse of the Fisher information matrix.172

7
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3. Simulation settings173

In this paper, simulations of STEM images with the inclusion of the FL model and the AP174

model are performed using the MULTEM [37, 38] and STEMsim [13, 39] programs, respec-175

tively. Although both programs show the same results for simulations with FL calculations using176

the Weickenmeier and Kohl parametrization [29], the advantage of MULTEM with respect to177

STEMsim is the computation time. Especially since MULTEM uses the graphical processor unit178

(GPU) instead of the central processor unit (CPU), it is more time-efficient for this type of cal-179

culations. Simulations have been performed for isolated atomic columns and FCC structures of180

Cu, Ag, and Au atoms with a lattice parameter of 3.615 Å, 4.0853 Å and 4.078 Å, respectively.181

For the isolated columns, the distance between atoms in the column is chosen equal to the lattice182

parameter of their respective FCC structure.183

184

In order to study the annular dependence, simulations are performed for a detector covering185

the range from 40 to 160 mrad in steps of 2 mrad. Moreover, simulations are performed using186

three detectors as shown in table 1. In STEM image formation, the intensity of each pixel of the187

image is the result of the intensity produced by diffracted electrons over the detector plane and188

integrated over the detector geometry. In this study, simulations have been performed assuming189

symmetric and concentric annular detectors with an ideal detector sensitivity. The Debye-Waller190

factor for the three atom types has been calculated [40] at a temperature of 300 K and the defocus191

value has been adjusted to the Scherzer conditions. The other parameters are shown in table 1.192

For the FL simulations, 200 configurations have been computed using the Einstein model.193

194

Table 1: Parameters for the MS simulations

Parameter Symbol Value
Annular detector 1 D1 (mrad) 40-80
Annular detector 2 D2 (mrad) 80-120
Annular detector 3 D3 (mrad) 120-160
Debye-Waller factor Cu (Å2) 0.5747
Debye-Waller factor Ag (Å2) 0.7612
Debye-Waller factor Au (Å2) 0.7003
Acceleration voltage (kV) 300
Defocus (Å) -14.03
FWHM of the source image (Å) 0.8
Spherical aberration CS (mm) 0.001
Spherical aberration of 5th order C5 (mm) 0.0
Convergence angle α0 (mrad) 21.00
Numerical real space grid 1536×1536

4. Numerical results195

In this section, both approximation methods used to include the TDS signal in STEM image196

simulations, that is, the FL and AP model, will be compared in terms of: a) integrated intensity197

and b) precision with which an atomic column can be located. These quantities are important198

8
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to determine the structure and chemical composition of the specimen when using STEM experi-199

ments.200

4.1. Integrated intensity201

In this section, both the FL and the AP models will be compared in terms of the integrated202

intensity that is produced by an atomic column. This integrated intensity corresponds to the203

so-called scattering cross section [41], which has been shown to be a good measure to count204

the number of atoms in an atomic column from a single STEM image [6, 42, 43, 44, 45] . It is205

defined as the total scattered intensity integrated over the scanned area. Furthermore, the scanned206

area will be selected in such a way that the atomic column will be placed in the centre in order207

to collect most of the scattered intensity [46, 47]. The integrated intensity is defined as208

Iint =

K∑

k

L∑

l

fkl∆x∆y, (26)

with fkl the fraction of electrons expected to be recorded by the detector at pixel (k, l) in a 2D209

STEM image with K ×L pixels. Furthermore, ∆x and ∆y is the pixel size along the x- and y-axis,210

respectively (usually ∆x = ∆y).211

212

The total intensity, calculated with the FL model is obtained by averaging the intensity of213

different configurations given by equation (12). Here, the MS method treats the interaction be-214

tween the electron and the rigorously displaced atoms as an elastic (coherent) scattering process215

in which the scattered wave still interferes with the unscattered wave [48]. On the other hand,216

the AP model describes the TDS intensity by including absorption in the dynamical equation of217

the electron diffraction using a complex lattice potential, and calculates this intensity following218

equation (14). In order to make a comparison between both methods, the integrated intensity219

for three atom types (Cu, Ag and Au) will be investigated in three different ways. In 4.1.1, we220

will analyse how both methods distribute the integrated intensity over the annular detectors as a221

function of thickness. Next, in 4.1.2, the integrated intensity will be quantified for three detector222

ranges of an isolated column. In 4.1.3, this procedure will be repeated to quantify the integrated223

intensity of a column inside an FCC structure.224

4.1.1. Distribution over the annular detector225

Using equation (26), the integrated intensity produced by an isolated atomic column has226

been calculated as a function of thickness. To perform the simulations, a super cell of length227

30 × 30 × Lat is considered with Lat the number of atoms in the column times the interatomic228

distance. Therefore, STEM images have been simulated with a pixel size of 0.15 Å over a square229

region with a side length of 20 Å. The atomic column with thickness up to 20 nm was placed in230

the centre of the scanned region. The annular detector covers a range from 40 to 160 mrad in231

steps of 2 mrad. For low angles, we refer to the lower values of this range. For each ring (an-232

nular detector of 2 mrad wide), the integrated intensity was computed. In this manner, it can be233

investigated how both methods distribute the intensity over the annular detector for atoms with234

different scattering factors. The results of these distributions are shown in figure 1.235

236

9
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Figure 1: Distribution of the STEM integrated intensity over the detector range as a function of the thickness for an
isolated column of atoms of Cu, Ag, and Au. The detector covering the range from 40 to 160 mrad was subdivided into
60 rings of 2 mrad each. The integrated intensity was calculated for each ring as a function of thickness. Figures a-c)
show the results performed using the FL method. Figures d-f) show the results performed using the AP method. Figures
g-i) show the proportion of the FL with respect to the AP method (FL/AP).

Figures 1a-c and 1d-f show the results of the distribution of the integrated intensity computed237

from simulations performed using the FL and the AP models, respectively. From these figures,238
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with equal scale-bar for the intensity, we can observe that the amount of intensity produced for239

both methods is different. The sensitivity of this difference between both methods may be a con-240

sequence of a break-down of the local approximation for the TDS absorption potential [49, 50]241

which suggests that the effect should be more pronounced in smaller detectors, in our case nar-242

rower detectors. This difference seems to change as a function of: a) thickness, b) detector range,243

and c) atom type. The ratio between intensities generated using both methods (FL/AP) is illus-244

trated in figures 1g-i. For most detector angles and thickness values, the FL model results into245

higher intensities as compared to the AP model. Only for a small part of the detector range (low246

angles), the AP model has equal or higher intensity as compared to the FL model. These figures247

also demonstrate how the ratio between both methods depends on the atom type suggesting that248

this ratio increases as a function of the scattering factor. For example, the maximum ratio of the249

intensity for Au atoms (strong scattering factor) is larger as compared to the maximum ratio of250

intensities for atoms of Ag (medium scattering factor) and Cu (weak scattering factor).251

252

More particularly, when comparing both methods for the three atoms types, we observe:253

• For atoms of Cu: figures 1a,d show that both methods have a similar distribution of the254

scattered intensity. However, the ratio between both methods is not linear as we can see255

more clearly in figure 1e where larger differences between both methods are observed in256

the range between 70 to 120 mrad. For this atom type, the ratio between both models257

oscillates in the range from 0.9 to 1.2.258

• For atoms of Ag: figures 1b,e show that the AP model produces more scattering than the259

FL model for low angles (lower than 50 mrad). For higher angles, the difference between260

both methods starts to increase, especially in the range from 80 to 120 mrad where the FL261

model results into higher intensities as compared to the AP model. This is shown in figure262

1h. For this atom type, the ratio between both models oscillates in the range from 0.9 to263

1.3.264

• For atoms of Au: figures 1c,f show a similar behaviour for atoms of Ag although with even265

larger ratios between both methods. Figure 1i shows this behaviour more clearly. The266

largest difference between both methods is found in the range from 100 to 150 mrad and267

for thickness values larger than 100 Å. The ratio between both models oscillates in the268

range from 0.7 to 1.4. When comparing these results with the results shown in figures 1g269

and 1h, we can see that the detector range, where the AP model results into larger intensity270

values than the FL model increases as a function of scattering factor.271

Based on this comparison, we can conclude that both models are only in good agreement in272

a very small detector range. This range depends on the atom type. Furthermore, the comparison273

shows that the AP model results into larger intensity values than the FL model for low angles.274

For larger angles, the FL model results into more scattering than the AP model. This distribution275

suggests that for detectors of realistic size, the integrated intensity depends on the collected276

detector range. For example, if we compute the integrated intensity for Au atoms using a detector277

ranging from 40 to 80 mrad, both methods will show similar results because the difference for278

low angles will be compensated with the difference observed for higher angles.279

4.1.2. Integrated intensities for isolated columns280

In the previous subsection, the distribution of the integrated intensity as a function of detector281

angle and thickness has been computed for both models. In order to quantify the difference of the282
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Figure 2: Integrated intensity as a function of thickness for an isolated column of atoms of Cu, Ag, and Au. The
integrated intensity was calculated from simulations performed using the MS algorithm with the inclusion of the frozen
phonon (red line) and absorptive potential (blue line). Figures a,d,g) correspond to the detector of 40 to 80 mrad; figures
b,e,h) correspond to the detector of 80 to 120 mrad; and figures c,f,i) correspond to the detector of 120 to 160 mrad.

integrated intensity between both models for realistic detector settings, we proceed in the same283

way as in the previous subsection. We use the three detectors D1, D2, and D3 defined in table 1284

with all other parameters kept constant. The results are shown in figure 2, where the integrated285

intensity is plotted as a function of thickness for an atomic column consisting of Cu, Ag, and Au286

atoms. From these figures, we conclude that:287

• for detector D1 (first column of figure 2), both methods are in good agreement for small288

thicknesses with values around 140 Å, 100 Å, and 20 Å for atoms of Cu, Ag, and Au,289

respectively. For larger thicknesses, the FL model produces more intensity than the AP290

model for Cu and Ag, whereas for Au, the effect is opposite.291

• for detector D2 (second column of figure 2), both methods are in good agreement up to292

thicknesses around 20 Å for the three atom types. For larger thicknesses, the FL model293

produces more intensity than the AP model. The difference between both methods scales294

with the thickness and the scattering factor.295

• for detector D3 (third column of figure 2), both methods show the same behaviour as for296

detector D2.297
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Assuming the FL as the most accurate model, we can conclude from the results shown in298

figure 2 that for detector D1, the AP model underestimates the integrated intensity for Cu and299

Ag, whereas it overestimates for Au. Despite these differences, the fact that both methods show300

similar results for detector D1 does not mean that both methods are distributing the intensity in301

the same way. This is shown in figures 1g-i. In this detector range, there is a compensation of302

the intensity. For angles close to 40 mrad, the AP model scatters more intensity and for angles303

close to 80 mrad the FL model scatters more intensity. For detectors D2 and D3, the AP model304

underestimates the intensity. This effect seems to increase as a function of thickness and also as305

a function of the scattering factor. A possible explanation for this observation can be found in306

the fact that the FL includes multiple elastic and TDS scattering to all orders [22] whereas the307

AP assumes that, once thermally scattered, the electrons are not scattered again [25].308

309

The impact of the observed differences in intensity between both models will depend on the310

purpose for which the intensity is used. For example, if one wants to quantify the location of311

atomic columns from 2D STEM images, the difference in intensity between both methods is312

perhaps not important. However, if the analysis is focused on the quantification of the number313

of atoms or atom type, this difference can introduce wrong values. In equations (11) and (16),314

the intensity is related to the scattering factor amplitude of the atom type. From the results,315

we can observe that atoms with high scattering factor scatter more intensity to higher angles as316

compared to atoms with weak scattering factor. One should realize that this study is based on an317

isolated column and does not take into account the effect caused by cross-talk produced by the318

neighbouring columns [51, 52]. Therefore, in the next subsection we will analyse this effect for319

more realistic specimens.320

4.1.3. Integrated intensities for FCC structures321

To compare the integrated intensity between both models for more realistic specimens, where322

the cross-talk produced by neighbouring columns is taken into account, an FCC structure of Cu,323

Ag, and Au atoms with lattice parameters of 3.615 Å, 4.0853 Å, and 4.078Å, respectively, were324

assumed. The simulation were performed using a super cell of 36.1×36.1×Luc, 36.7×36.7×Luc325

and 36.7× 36.7× Luc for atoms of Cu, Ag and Au, respectively, where Luc is equal to the number326

of unit cells along the beam direction times the interatomic distance. We used the detectors D1,327

D2, and D3, and the parameters mentioned in table 1. The integrated intensity was computed328

FL AP FL-AP -2x10

7

6

5

4

3

2

a) b) c)

1Å

Figure 3: Simulated STEM images of an FCC structure of Au atoms along the [001] zone-axis for a thickness of 20 nm
and a detector ranging from 120 to 160 mrad, using the MS algorithm with the inclusion of a) the frozen lattice model,
and b) the absorptive potential approximation. Figure (c) is the difference between the frozen lattice and the absorptive
potential approximation. All images are plotted on the same scale.
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Figure 4: Integrated intensity as a function of thickness for an atomic column of an FCC structure of atoms of Cu, Ag,
and Au. The integrated intensity was calculated from simulations performed using the MS algorithm with the inclusion
of the FL (red line) and AP approximation (blue line). Figures a,d,g) correspond to the detector of 40 to 80 mrad; figures
b,e,h) correspond to the detector of 80 to 120 mrad; and figures c,f,i) correspond to the detector of 120 to 160 mrad.

over a scanned area equivalent to one unit cell with a pixel size of 0.145 Å along the [001]329

zone-axis as shown in figure 3. In order to compare the integrated intensity with respect to one330

atomic column, the integrated intensity of one unit cell is divided by the number of projected331

atomic columns in one projected unit cell, which in this case equals 4. Using this criterion, the332

integrated intensity was computed as a function of thickness. The first, second and third column333

of figure 4 show the results of the integrated intensity as a function of thickness for the three334

atom types for detectors D1, D2 and D3, respectively. When comparing these results with the335

integrated intensities computed for an isolated column, as shown in figure 2, only small differ-336

ences are observed. In general the behaviour is the same for the three detectors and for the three337

atom types. Although neighbouring columns do not cause significant deviations in the integrated338

intensity, this effect depends on the detector range and thickness [53].339

340

This study has also been performed for Au atoms with an acceleration voltage of 80 kV and341

200 kV keeping the same input parameters and using the same equivalent semi-aperture angle342

and detectors used at 300 kV. At 80 kV, a semi-aperture angle of 44.5 mrad and equivalent detec-343

tors D1, D2, and D3 of [84.9-170.3] mrad, [170.3-256.7] mrad and [256.7-344.7] mrad have been344

considered, respectively. At 200 kV, these values are equal to a semi-aperture angle of 26.7 mrad345
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and detectors of [50.9-101.9] mrad, [101.9-153.1] mrad and [153.1-204.3] mrad. The results at346

80 kV and 200 kV are shown in figure 5. From this figure we can observe that at these lower347

voltages, both models show the same trend but the difference between both models increases as a348

function of thickness for the equivalent detector D1. For detectors D2 and D3, the FL model has349

a steeper slope as compared to the AP model. For thicknesses up to about 10 nm, the intensities350

produced by the AP model are larger than those of the FL model. For larger thicknesses, the FL351

model results into larger intensities. Furthermore, the difference scales with thickness. As com-352

pared to the results obtained at 300 kV, larger differences are obtained at those lower acceleration353

voltages.354

355

In general, the results of this section show that the AP model may lead to considerable dif-356

ferences as compared to the FL model. Especially for detectors D2 and D3, the intensity is357

underestimated as a function of thickness and atom type. Therefore, we need to be careful when358

using the AP model to quantify the number of atoms or atom type. It is also important to mention359

that this result cannot be generalized to all atom types. Table 2 shows the maximum difference360

in number of atoms between the FL and the AP model up to a thickness of 20 nm corresponding361

to 55 atoms of Cu and 49 atoms of Ag and Au in the column. Figure 4 shows that the AP model362

underestimates the number of atoms with respect to the FL model with only one exception for363

detector D1, where the intensity is overestimated in the presence of Au atoms.364

4.2. The ultimate precision365

In this section, both the FL and AP models will be compared in terms of the ultimate pre-366

cision with which an atomic column can be located in 2D from images acquired using HAADF367
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Figure 5: Integrated intensity as a function of thickness for an atomic column of an FCC structure of Au atoms. The
integrated intensity was calculated from simulations performed using the MS algorithm with the inclusion of the FL
model (red line) and the AP approximation (blue line). Figures a-c) correspond to an acceleration voltage of 80 kV
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Table 2: Maximum difference in assigning the number of atoms when using the FL and AP model up to a thickness of
20 nm for each detector.

D1 D2 D3

Cu 4 12 10
Ag 5 14 14
Au 5 17 22

STEM [2, 54]. The ultimate precision, i.e. the lower bound on the standard deviation with which368

unknown structure parameters can be estimated unbiasedly, is given by the elements of the di-369

agonal of the inverse of the Fisher information matrix F, defined by equation (23). From this370

equation, it is clear that the elements of the Fisher information matrix have to be calculated using371

the derivatives of the parametric model of the intensity observations λkl given by equation (19)372

with respect to the position coordinates of the projected atomic columns. In this study, the para-373

metric model for the intensity observations λkl is simulated using the MS method.374

375

As mentioned in section 2.1, the MS method is a numerical solution of the Schrödinger376

equation. In order to calculate the partial derivatives, additional sets of MS simulations are377

required in which a single atomic column is shifted along an axis. For example, for the derivative378

of an atomic column with respect to the x-coordinate, this column is displaced along the x-axis.379

The partial derivatives are then approximated using the following expression:380

λ′(x) ≈ λ(x + h) − λ(x)
h

(27)

where h is the shift of the column from its regular position along the x-axis. Similarly, the381

derivatives with respect to the y-axis can be calculated. The comparison between the FL and the382

AP models will be done in two ways. First, the ultimate precision to locate an isolated column383

of gold atoms from 2D STEM images is investigated. Next, the ultimate precision to locate a384

column inside an FCC structure is studied. For both cases, it will be investigated if the FL and AP385

models lead to the same results for the ultimate precision. For these calculations, the convergence386

of the derivatives given by equation (27) was analysed as a function of the displacement h, the387

number of configurations in the FL model, and the pixel size of the images. In this manner,388

optimal values were found with h = 2 pm, 200 FL configurations, and a pixel size of 0.35 Å.389

4.2.1. Isolated column390

From equation (23), it can be seen that the calculation of the Fisher information matrix re-391

quires the derivatives of the expectation model λkl with respect to the unknown parameters. In392

this case, the unknown parameters are the projected x and y coordinates of an isolated atomic393

column given by the vector394

β = (βx, βy). (28)

Because of the cylindrical symmetry of the image intensity distribution of an atomic column,395

the derivatives with respect to the x- and y-axis are the same. Therefore, the Fisher information396

matrix simplifies to:397

F =

[
F11 F12

F12 F22

]
. (29)
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From equation (24) it follows that the CRLB on the variance, that is, σ2
βx

or σ2
βy

, is given by the398

corresponding diagonal element of F−1:399

σ2
βx

= σ2
βy

= F−1(1, 1). (30)

The square root of the values of equation (30) gives us a lower bound on the standard deviation400

σ = σβx = σβy .401
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Figure 6: The ultimate precision σ to locate an isolated column of gold atoms as a function of thickness from simulated
STEM images performed using the MS algorithm with the inclusion of the FL model (red line) and the AP model (blue
line) for three detectors: a) [40-80] mrad, b) [80-120] mrad, and c)[120-160] mrad.

The CRLB has been computed for the FL and AP using a square region of 12.234 Å with a403

pixel size of 0.3398 Å for the atomic column at the centre of this region. An incident electron404

dose of 21652 e−/Å2 was used corresponding to a beam current of 40 pA and pixel dwell time405

τ = 10µs. The results for the precision are shown in figure 6 as a function of thickness. From this406

figure we can observe that the ultimate precision has the same behaviour for both methods for407

the three detectors. The precision improves as a function of thickness but beyond a certain value408

the gain in precision is marginal. For higher angles, the precision decreases i.e. the standard409

deviation increases. However, when comparing the results of both methods, the FL model shows410

a better precision for the three detectors as compared to the AP model. The difference between411

both methods is approximately constant with thickness. It is important to note that the precision412

is different for both methods even for the detector D1 where similar results for the integrated413

intensities were found. Figure 2(g) shows that the AP model scatters more intensity than the FL414

but in terms of precision the FL model predicts a better precision as shown in figure 6(a). The415

reason for this is that the distribution of the intensity over the scanned area is different for both416

methods.417

4.2.2. FCC structure418

In section 4.2.1, the ultimate precision to locate an atomic column in 2D was computed for an419

isolated column. In order to compute this theoretical limit on the precision for an atomic column420

where its intensity is affected by the cross-talk of the neighbouring columns, an FCC structure421

was assumed. The precision also depends on the atom types. Calculations were therefore per-422

formed for both the AP and the FL models using the same settings as for the integrated intensity423

in section 4.1.3.424

425

Figure 7 shows the results of the ultimate precision as a function of thickness for the three426

atom types. From this figure, the precision with which a column of Cu atoms can be located427
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Figure 7: The ultimate precision to locate the central atomic column of Cu, Ag, and Au atoms in an FCC structure using
the collected intensity of three detectors: a,d,g) [40-80] mrad. b,e,h) [80-120] mrad. c,f,i) [120-160] mrad. The precision
was computed from simulated STEM images performed using the MS algorithm with the inclusion of the FL (red line)
and AP approximation (blue line).

shows a similar behaviour for both methods. The precision improves as a function of thickness.428

However, beyond a certain value this gain is only marginal. For Ag and Au, the precision first429

improves as a function of thickness and beyond a certain value the precision starts to decrease.430

This behaviour is more pronounced for Au than for Ag. These results show that the behaviour431

of the ultimate precision to locate an atomic column from 2D STEM images for the three atom432

types is strongly related to their scattering factor amplitude. For atoms with a small scattering433

factor amplitude such as Cu, the intensity is scattered close to the location of the atomic col-434

umn position and therefore the contribution due to crosstalk is small. For atoms with a medium435

scattering factor such as Ag, the effect of crosstalk starts to make an influence on the calculation436

of the precision. For atoms with a strong or high scattering factor amplitude, such as Au, the437

influence of crosstalk is even more pronounced in the calculation of the precision.438

439

From figure 7, it may also be observed that the precision differs for both models. For atoms440

of Cu, the AP shows a better precision as compared to the FL model for thicknesses larger than441

1 nm for the three detector ranges. This difference increases as a function of the angles, i.e.442
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detectors with higher angles result into a larger difference for the precision. For atoms of Ag, the443

same behaviour is presented for detector D1. For detectors D2 and D3, the FL presents a better444

precision as compared to the AP model for all thicknesses. For atoms of Au, the behaviour of445

the precision for detector D1 is the same as presented for atoms of Cu. For detectors D2 and446

D3, the AP shows a better precision for small thicknesses, and the FL for larger thicknesses. It447

is important to mention that the attainable precision with which atomic column positions can be448

measured, can be used to optimize the settings of the electron microscope [55, 56]. The observed449

differences between the predicted precision for both methods shown in figure 7 is small enough450

to accurately predict the optimal settings and to get an accurate prediction of the precision that451

can ultimately be attained.452

453

5. Conclusions454

In this work, two of the most popular methods used to simulate STEM images, the frozen455

phonon and the absorptive potential model, were compared in terms of the integrated intensity456

and the theoretical limits with which an atomic column can be located in 2D based on the acqui-457

sition of HAADF STEM images.458

459

The integrated intensity was computed by integrating the total scattered intensity over the460

scanned area. The results show a similar trend of the intensity as a function of thickness but461

with different values for both models in the cases of an isolated atomic column and an atomic462

column within an FCC structure. For the detector ranging from 40 to 80 mrad the difference of463

the integrated intensity between both models is small especially for small thicknesses. For the464

detectors ranging from 80 to 120 mrad and from 120 to 160 mrad, this difference increases as a465

function of thickness and atom type. This means that atoms with a strong scattering factor results466

into a larger difference in the integrated intensity. From this comparison, the results suggest that467

we need to be careful when using the absorptive potential model for quantification when using468

the integrated intensity because for high angles and large thicknesses this model underestimates469

the integrated intensity.470

471

Using the concept of the Cramér-Rao lower bound, the ultimate precision with which an472

atomic column can be located from 2D HAADF STEM images has been computed for an isolated473

column of Au atoms and for an atomic column within an FCC structure of Cu, Ag, and Au atoms.474

For an isolated atomic column of Au atoms, the precision improves as a function of thickness,475

but beyond a certain value, the gain in precision is marginal for both methods. However, for all476

thicknesses, the frozen phonon predicts a better precision as compared to the absorptive potential477

model. For the atomic column of an FCC structure, the ultimate precision depends on the atom478

type and detector range. For the detector ranging from 40 to 80 mrad, the absorptive potential479

shows a better precision with respect to the frozen phonon model for the three atom types. For the480

detectors ranging from 80 to 120 mrad, the results for both methods are similar. The difference481

between both methods are in the picometre scale for the simulation settings used in this paper.482
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