|
Record |
Links |
|
Author |
Robert, Hl.; Lobato, I.; Lyu, Fj.; Chen, Q.; Van Aert, S.; Van Dyck, D.; Müller-Caspary, K. |
|
|
Title |
Dynamical diffraction of high-energy electrons investigated by focal series momentum-resolved scanning transmission electron microscopy at atomic resolution |
Type |
A1 Journal article |
|
Year |
2022 |
Publication |
Ultramicroscopy |
Abbreviated Journal |
Ultramicroscopy |
|
|
Volume |
233 |
Issue |
|
Pages |
113425 |
|
|
Keywords |
A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab |
|
|
Abstract |
We report a study of scattering dynamics in crystals employing momentum-resolved scanning transmission
electron microscopy under varying illumination conditions. As we perform successive changes of the probe
focus, multiple real-space signals are obtained in dependence of the shape of the incident electron wave.
With support from extensive simulations, each signal is shown to be characterised by an optimum focus for
which the contrast is maximum and which differs among different signals. For instance, a systematic focus
mismatch is found between images formed by high-angle scattering, being sensitive to thickness and chemical
composition, and the first moment in diffraction space, being sensitive to electric fields. It follows that a single
recording at one specific probe focus is usually insufficient to characterise materials comprehensively. Most
importantly, we demonstrate in experiment and simulation that the second moment ( |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000734396800009 |
Publication Date |
2021-11-13 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0304-3991 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
2.2 |
Times cited |
|
Open Access |
OpenAccess |
|
|
Notes |
We thank Dr. Florian Winkler for valuable discussions and experimental work at the early stages of this study. This work was supported by the Initiative and Network Fund of the Helmholtz Association (Germany) under contracts VH-NG-1317 and ZT-I-0025. This project furthermore received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement No. 770887). |
Approved |
Most recent IF: 2.2 |
|
|
Call Number |
EMAT @ emat @c:irua:184833 |
Serial |
6898 |
|
Permanent link to this record |