|
Record |
Links |
|
Author |
De wael, A.; De Backer, A.; Lobato, I.; Van Aert, S. |
|
|
Title |
Modelling ADF STEM images using elliptical Gaussian peaks and its effects on the quantification of structure parameters in the presence of sample tilt |
Type |
A1 Journal article |
|
Year |
2021 |
Publication |
Ultramicroscopy |
Abbreviated Journal |
Ultramicroscopy |
|
|
Volume |
|
Issue |
|
Pages |
113391 |
|
|
Keywords |
A1 Journal article; Electron microscopy for materials research (EMAT) |
|
|
Abstract |
A small sample tilt away from a main zone axis orientation results in an elongation of the atomic columns in ADF STEM images. An often posed research question is therefore whether the ADF STEM image intensities of tilted nanomaterials should be quantified using a parametric imaging model consisting of elliptical rather than the currently used symmetrical peaks. To this purpose, simulated ADF STEM images corresponding to different amounts of sample tilt are studied using a parametric imaging model that consists of superimposed 2D elliptical Gaussian peaks on the one hand and symmetrical Gaussian peaks on the other hand. We investigate the quantification of structural parameters such as atomic column positions and scattering cross sections using both parametric imaging models. In this manner, we quantitatively study what can be gained from this elliptical model for quantitative ADF STEM, despite the increased parameter space and computational effort. Although a qualitative improvement can be achieved, no significant quantitative improvement in the estimated structure parameters is achieved by the elliptical model as compared to the symmetrical model. The decrease in scattering cross sections with increasing sample tilt is even identical for both types of parametric imaging models. This impedes direct comparison with zone axis image simulations. Nonetheless, we demonstrate how reliable atom-counting can still be achieved in the presence of small sample tilt. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000704334200001 |
Publication Date |
2021-09-24 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0304-3991 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
2.843 |
Times cited |
|
Open Access |
OpenAccess |
|
|
Notes |
This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No. 770887 and No. 823717 ESTEEM3). The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through grants to A.D.w. and A.D.B. and projects G.0502.18N, G.0267.18N, and EOS 30489208. S.V.A. acknowledges TOP BOF funding from the University of Antwerp.; esteem3JRA; esteem3reported |
Approved |
Most recent IF: 2.843 |
|
|
Call Number |
EMAT @ emat @c:irua:181462 |
Serial |
6810 |
|
Permanent link to this record |