|
Record |
Links |
|
Author |
Martinez, G.T.; van den Bos, K.H.W.; Alania, M.; Nellist, P.D.; Van Aert, S. |
|
|
Title |
Thickness dependence of scattering cross-sections in quantitative scanning transmission electron microscopy |
Type |
A1 Journal article |
|
Year |
2018 |
Publication |
Ultramicroscopy |
Abbreviated Journal |
Ultramicroscopy |
|
|
Volume |
187 |
Issue |
|
Pages |
84-92 |
|
|
Keywords |
A1 Journal article; Electron microscopy for materials research (EMAT) |
|
|
Abstract |
In quantitative scanning transmission electron microscopy (STEM), scattering cross-sections have been shown to be very sensitive to the number of atoms in a column and its composition. They correspond to the integrated intensity over the atomic column and they outperform other measures. As compared to atomic column peak intensities, which saturate at a given thickness, scattering cross-sections increase monotonically. A study of the electron wave propagation is presented to explain the sensitivity of the scattering cross-sections. Based on the multislice algorithm, we analyse the wave propagation inside the crystal and its link to the scattered signal for the different probe positions contained in the scattering cross-section for detector collection in the low-, middle- and high-angle regimes. The influence to the signal from scattering of neighbouring columns is also discussed. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000428131200011 |
Publication Date |
2018-01-31 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0304-3991 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
2.843 |
Times cited |
4 |
Open Access |
Not_Open_Access: Available from 01.02.2020
|
|
|
Notes |
The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings ( G.0374.13N , G.0369.15N , G.0368.15N and WO.010.16N ) and a PhD grant to K.H.W.v.d.B. The research leading to these results has received funding from the European Union 7th Framework Programme [ FP7 /2007-2013] under Grant agreement no. 312483 (ESTEEM2). The authors are grateful to A. Rosenauer for providing access to the StemSim software. |
Approved |
Most recent IF: 2.843 |
|
|
Call Number |
EMAT @ emat @c:irua:149384 |
Serial |
4809 |
|
Permanent link to this record |