|
Record |
Links |
|
Author |
Gonnissen, J.; De Backer, A.; den Dekker, A.J.; Sijbers, J.; Van Aert, S. |
|
|
Title |
Detecting and locating light atoms from high-resolution STEM images: The quest for a single optimal design |
Type |
A1 Journal article |
|
Year |
2016 |
Publication |
Ultramicroscopy |
Abbreviated Journal |
Ultramicroscopy |
|
|
Volume |
170 |
Issue |
170 |
Pages |
128-138 |
|
|
Keywords |
A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab |
|
|
Abstract |
In the present paper, the optimal detector design is investigated for both detecting and locating light atoms from high resolution scanning transmission electron microscopy (HR STEM) images. The principles of detection theory are used to quantify the probability of error for the detection of light atoms from HR STEM images. To determine the optimal experiment design for locating light atoms, use is made of the so-called Cramer-Rao Lower Bound (CRLB). It is investigated if a single optimal design can be found for both the detection and location problem of light atoms. Furthermore, the incoming electron dose is optimised for both research goals and it is shown that picometre range precision is feasible for the estimation of the atom positions when using an appropriate incoming electron dose under the optimal detector settings to detect light atoms. |
|
|
Address |
Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium. Electronic address: sandra.vanaert@uantwerpen.be |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Wos |
000386925500014 |
Publication Date |
2016-07-26 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0304-3991 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
2.843 |
Times cited |
6 |
Open Access |
|
|
|
Notes |
The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (G.0368.15, G.0369.15 and G.0374.13) and a postdoctoral research grant to A. De Backer. The research leading to these results has also received funding from the European Union Seventh Framework Programme [FP7/2007-2013] under Grant agreement no. 312483 (ESTEEM2). The authors would also like to thank A. Rosenauer for providing access to the STEMsim software and Gerardo T. Martinez for fruitful discussions.; esteem2_jra2 |
Approved |
Most recent IF: 2.843 |
|
|
Call Number |
c:irua:135337 c:irua:135337 |
Serial |
4128 |
|
Permanent link to this record |