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Abstract

In the present paper, the principles of detection theory are used to quan-

tify the probability of error for atom-counting from high resolution scanning

transmission electron microscopy (HR STEM) images. Binary and multiple

hypothesis testing have been investigated in order to determine the limits to

the precision with which the number of atoms in a projected atomic column

can be estimated. The probability of error has been calculated when us-

ing STEM images, scattering cross-sections or peak intensities as a criterion

to count atoms. Based on this analysis, we conclude that scattering cross-

sections perform almost equally well as images and perform better than peak

intensities. Furthermore, the optimal STEM detector design can be derived

for atom-counting using the expression for the probability of error. We show

that for very thin objects LAADF is optimal and that for thicker objects the

optimal inner detector angle increases.
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STEM), Electron microscope design and characterisation, Data

processing/image processing

1. Introduction

Ever since its invention in 1931, the optical capabilities of the electron

microscope have always been restricted by effects of inherent lens aberra-

tions, preventing its spatial resolution to reach values near the theoretical

limit. Since electron microscopy plays an important role in progressing cur-

rent science and technology, exceptional efforts were made to overcome these

restraints. However, only in 1990, aberration-corrected electron optics was

developed for the first time, when the three Wolf Prize Laureates at the time

worked together. Their research leading to the achieved result was based

on a new optical concept for the spherical aberration correction of the ob-

jective lens in the electron microscope, which was invented by Harald Rose

[1, 2]. As a result of the introduction of aberration-corrected electron mi-

croscopes the interpretability of the images has recently improved down to

atomic resolution [3, 4]. At the same time other instrumental developments

have improved the resolution of electron microscopes, such as the invention

of the monochromator [5]. In addition, electron microscopists nowadays can

choose between an increasing versatility of microscope settings. One can for

example choose between TEM or STEM, between imaging or diffraction tech-

niques, and between a wide range of different detectors, from which several

types were proposed and investigated by Harold Rose like the ABF STEM

detector [6]. Furthermore, an electron microscopist can tune parameters

such as defocus, accelerating voltage, spherical aberration, energy spread of
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incoming electrons, beam tilt and crystal tilt. A better resolution can there-

fore be achieved by tuning these parameters. A resolution beyond 1 Å allows

microscopists to visually distinguish atom columns of solids oriented along a

main zone axis. One can now not only interpret STEM images qualitatively

in terms of resolution, but also quantitatively in terms of precision [7–10].

Unlike qualitative materials characterisation methods, which are based on a

visual interpretation of the observations, quantitative methods allow the ex-

traction of local structure information at the subangstrom level. This helps

to obtain a precision of the order of 0.01− 0.1 Å for the atomic column po-

sitions [11, 12]. In order to achieve the highest possible precision with which

unknown structure parameters can be determined, the question rises which

microscope settings are optimal. It is of great importance to be able to spec-

ify structure parameters such as the number of atoms in a column, the atomic

number Z and the positions of the atoms, with the highest possible precision,

since the physical behaviour and properties of crystalline nano-particles are

determined by their exact structural and chemical composition.

Until now, different methods have been proposed and investigated to count

the number of atoms of a crystalline nano-structure from HAADF STEM

images. As a first attempt to solve the counting problem, Erni et al. [13]

proposed to measure the absolute value of the intensity differences between

neighbouring atom columns. LeBeau et al. [14–18] compared simulated

atom column intensities with normalised experimentally measured atom col-

umn intensities in order to count the number of atoms. Van Aert et al. [19]

developed a new quantitative, statistical model-based method to count the

number of atoms from HAADF STEM images of a structure viewed along
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a zone-axis. This approach may help determine the three-dimensional (3D)

arrangement of atoms in crystalline nano-particles [20–22]. Indeed, by apply-

ing this statistical counting method and combining the results for different

viewing directions, the 3D atomic structure can be attained using discrete to-

mography [23, 24]. Moreover, single atom sensitivity is shown to be feasible in

practice using this statistical model-based method, when taking aspects into

consideration that affect the accuracy and precision with which the atoms in

a column can be estimated, such as the number of atom columns available in

the observed STEM image, the number of columns having a different number

of atoms, and the amount of noise [19, 25].

In the present work we will explore the theoretical limits to the precision

with which the number of atoms in a column can be estimated from HR

STEM images. Therefore, STEM images are interpreted quantitatively and

the optimal experiment design to count the number of atoms in a column

is investigated. So far, the so-called Cramér-Rao lower bound (CRLB) has

been proven to be an optimal tool to determine a theoretical lower bound

on the precision with which continuous parameters such as atomic column

positions and intensities can be estimated [7–9, 26–38]. However, this lower

bound can only be derived for continuous parameters. Therefore an alterna-

tive measure using the principles of detection theory is introduced in [36, 39]

for problems concerning the estimation of the atomic number, which is a dis-

crete parameter. This measure will here be extended to the atom-counting

problem, where the number of atoms in a column can also be considered as

a discrete parameter.

Statistical detection theory allows us to derive a criterion to describe the
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performance of atom-counting provided that the expectations as well as sta-

tistical fluctuations of the experimental images can be accurately modelled.

In this framework, the atom-counting problem is formulated as a statistical

hypothesis test, where each hypothesis corresponds to a specific number of

atoms in an atomic column. The optimality criterion can then be defined as

the probability to choose the wrong hypothesis, i.e. the so-called probability

of error. In order to compute this probability of error, use can be made

of realistic simulations to describe the experimental images [15, 19, 40–42],

and knowledge about the statistics of the image pixel values. Ultimately,

the image pixel values will be Poisson distributed because of the unavoidable

presence of counting noise. This inherent presence of statistical fluctuations

will therefore set fundamental limits to the precision with which the number

of atoms can be determined.

By minimising the expression for the probability of error, the optimal exper-

iment design can be derived. In this paper the optimal inner and outer angle

of an annular STEM detector will be computed. So far the HAADF STEM

detector is often used for atom-counting [13, 14, 19–22, 43–46]. Here it will be

investigated if this imaging mode remains optimal in terms of atom-counting

precision. This procedure to derive the optimal STEM detector can then be

applied in practical future research problems so as to further improve the

precision to count atoms in a column [47].

The organisation of the paper is as follows. In section 2, detection theory

is discussed and the probability of error is derived for both a binary and a

multiple hypothesis test. In section 3, the proposed method will be applied

to a simulation of a SrTiO3 crystal to derive optimal inner and outer angles
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of the annular STEM detector. This will be done for a binary as well as

for a multiple hypothesis test. In Section 4, the results found for the binary

hypothesis test will be discussed and compared to those for the multiple

hypothesis test. In Section 5, conclusions are drawn.

2. Detection theory

When one is considering the problem of counting the number of atoms

in a projected atomic column of a mono-type crystalline structure from HR

STEM images, the goal is to obtain the number of atoms in a column as

precisely as possible. In this section, an expression for the probability to

miscount the number of atoms, the so-called probability of error, will be

derived. To start simple we use a binary hypothesis test in which only two

possible successive numbers of atoms are considered as possible outcomes.

Next, this theory will be extended toward a multiple hypothesis test. In that

case, all possible hypotheses up to a certain thickness for the column have

to be included.

2.1. Binary hypothesis test for atom-counting

In the case where one wants to know if there are n or n + 1 atoms in a

projected atomic column, the hypotheses are given by:

H0 : nH0 = n

H1 : nH1 = nH0 + 1 (1)

where H0 is referred to as the null hypothesis, H1 as the alternative hypoth-

esis and nHi
denotes the number of atoms under hypothesis Hi. In order
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to express a prior belief in the likelihood of the hypotheses, we assume that

the prior probabilities P (H0) and P (H1) associated with these hypotheses

are known. It is reasonable to assign equal prior probabilities of 1/2 if both

hypotheses are equally likely. Throughout the paper, we will always assume

that both hypotheses are equally likely. If we follow the quantitative method

proposed in [36], the goal is now to quantify the probability of assigning the

wrong hypothesis. In a so-called Bayesian approach, this probability of error

Pe is defined as:

Pe = Pr{decide H0, H1 true}
+Pr{decide H1, H0 true}

= P (H0|H1)P (H1) + P (H1|H0)P (H0) (2)

where P (Hi|Hj) is the conditional probability of deciding Hi when Hj is

true. Using criterion (2), the two possible errors are weighted appropriately

to yield an overall error measure. Decision rules are now defined such that

the probability of error is minimised. For this purpose, it is shown in [48]

that we should then decide H1 if

p(ω;H1)

p(ω;H0)
>

P (H0)

P (H1)
= γ = 1, (3)

otherwise H0 is decided. In this expression, p(ω;Hi) is the conditional prob-

ability function assuming Hi to be true, for the stochastic variable ω. The

exact expression for this probability function will be discussed for three dif-

ferent measures that can be used as a criterion to count atoms in a pro-

jected atomic column: peak intensities (PI), scattering cross-sections (CS),

HR STEM image pixel values of a projected atomic column. The stochastic
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variable ω will take a different form for these three measures:

ωPI for peak intensities (4)

ωCS =
K∑
k=1

L∑
l=1

ωkl · dx2 for cross-sections (5)

ωIm = [ω11, ω12, ω21, ..., ωKL]
T for images (6)

where the parameter ωkl corresponds to the random variables describing the

pixel intensities of the STEM image of the atomic column and ωPI corre-

sponds to the random variable describing the pixel intensity at the position

of the atomic column. The index kl denotes the probe position (xk, yl)
T for

a set of KL pixel observations, and dx denotes the pixel size of the STEM

image.

2.2. Peak intensities (PI)

When assuming that the pixels in a STEM image are statistically indepen-

dent electron counting results, which are modelled as a Poisson distribution,

the conditional probability function for the pixel intensity at the position of

a projected atomic column is given by:

p(ωPI ;Hi) =

(
λPI
Hi

)ωPI

ωPI !
exp

(−λPI
Hi

)
, (7)

where the parameter λPI
Hi

= EHi

[
ωPI

]
corresponds to the expectation value

for the pixel intensity of the STEM image at the position of the projected

atomic column. Since this expectation value will depend on which hypothesis

Hi is assumed to be true, also the probability function depends on Hi. In

general, this expectation value can be computed under each hypothesis using
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software that allows one to simulate a STEM image for a given input mate-

rial’s structure and a given set of microscope parameters [42]. Following the

decision rule of Eq. (3), for equal prior probabilities P (H0) = P (H1) = 1/2,

we decide H1 if:

p(ωPI ;H1) > p(ωPI ;H0) (8)

otherwise H0 is decided. An illustration of the conditional probability func-

tions p(ωPI ;Hi) of Eq. (7) for both hypotheses is given in Fig. 1(a) for the

peak intensities of a Sr column consisting of either 15 or 16 atoms. The dark

grey region denotes the error which is made if H0 is chosen while H1 is cor-

rect, and vice versa for the light grey region. It is clear from this image that

the probability of error then corresponds to the overlapping area of the two

conditional probability functions p(ωPI ;H0) and p(ωPI ;H1). This probabil-

ity can analytically be computed using the cumulative distribution function

of the Poisson distribution:

Pe =
1

2
P (H0|H1) +

1

2
P (H1|H0)

=
1

2
F

(
xPI ;λPI

H1

)
+

1

2

[
1− F

(
xPI ;λPI

H0

)]
(9)

where F
(
xPI ;λPI

Hi

)
equals the Poisson cumulative distribution function with

parameter λPI
Hi

evaluated at the value xPI , with xPI the intersection between

the two conditional distribution functions p(ωPI ;H0) and p(ωPI ;H1) given

by:

xPI =
λPI
H0

− λPI
H1

ln
λPI
H0

λPI
H1

. (10)
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Figure 1: Calculation of the probability of error for a binary hypothesis test for (a) peak

intensities ωPI (D = 106 e−/Å2 and nH0 = 15), (b) scattering cross-sections ωCS (D =

105 e−/Å2 and nH0 = 30), and (c) images ωIm (D = 105 e−/Å2 and nH0 = 30) of a Sr

column with a detector collection range of 60 − 100 mrad and settings of Table 1 which

are explained section 3.1.

2.3. Scattering cross-sections (CS)

As a second measure, next to the peak intensities, one can also use scat-

tering cross-sections under both hypotheses. The scattering cross-section

values are computed in the following way (Eq. (5)) [49]:

ωCS =
K∑
k=1

L∑
l=1

ωkl · dx2 (11)

Voronoi cells can be used to define the integration area for the computation

of the scattering cross-sections. A Voronoi cell of an atomic column is the

cell formed by the perpendicular bisectors of the direct connections to the

neighbouring columns. This definition of the scattering cross-sections is used

here for simplicity as the scattering cross-section values can directly be cal-

culated from the simulated STEM images in this way, since the positions of

the atomic columns are known from the simulation. Generally, a parametric

model consisting of Gaussian peaks at the atomic column positions, is used
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to describe the pixel intensities of the STEM image [10, 19, 20, 25]. Then,

the scattering cross-section corresponds to the volume under the estimated

Gaussian peak. These volumes are equivalent to the computed values from

the integration of the Voronoi cells. However, the use of the volumes pro-

vides some extra advantages, since the parametric model takes into account

overlap between neighbouring atomic columns.

The expected scattering cross-section value equals:

EHi

[
ωCS

]
=

K∑
k=1

L∑
l=1

λHi,kl · dx2 = CSn (12)

where λHi,kl = EHi
[ωkl] corresponds to the expectation values for the pixel

intensities of the STEM image of the atomic column and CSn is the expected

scattering cross-section for n atoms. Since a sum of independent Poisson

distributed variables is known to be Poisson distributed [50], the variable

K∑
k=1

L∑
l=1

ωkl (13)

is therefore also Poisson distributed. The expected value λHi
then equals:

λHi
=

K∑
k=1

L∑
l=1

λHi,kl. (14)

The conditional probability distribution for a scattering cross-section taking

into account the constant factor dx2, is then given by:

p(ωCS;Hi) =
(λHi

)
ωCS

dx2(
ωCS

dx2

)
!
exp (−λHi

) , (15)

Analogous to the decision rule for the peak intensities of Eq. (8), we decide

H1 for the scattering cross-sections when assuming equal prior probabilities
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P (H0) = P (H1) = 1/2 if:

p(ωCS;H1) > p(ωCS;H0) (16)

otherwise H0 is decided. This decision rule and the calculation of the prob-

ability of error using the conditional probability function given by Eq. (15)

is illustrated in Fig. 1(b). The probability of error is then reformulated as

follows for the scattering cross-sections:

Pe =
1

2
P (H0|H1) +

1

2
P (H1|H0)

=
1

2
F

(
xCS

dx2
;λH1

)
+

1

2

[
1− F

(
xCS

dx2
;λH0

)]
(17)

where F
(

xCS

dx2 ;λHi

)
equals the Poisson cumulative distribution function with

parameter λHi
evaluated at xCS/dx2 and xCS is the intersection of the two

probability functions p(ωCS;H0) and p(ωCS;H1) given by:

xCS =
(λH0 − λH1) dx

2

ln
λH0

λH1

. (18)

If one now wants to count the number of atoms in a column with single atom

sensitivity, the goal is to optimise the experiment design as a function of the

detector settings in order to have the lowest probability of choosing the wrong

number of atoms. The detector configuration for which the probability of

error reaches a minimum is then considered as the optimal detector setting.

From Fig. 1(b), it can be seen that the probability of error decreases if

the two distributions are more separated. A high difference between the

expected values is therefore desired, as well as small values for the width of

the distributions. The difference between the expected values of ωCS for each
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hypothesis can be expressed as:

EH1

[
ωCS

]− EH0

[
ωCS

]
= (CSn +ΔCSn,n+1)− CSn = ΔCSn,n+1 (19)

with ΔCSn,n+1 the expected difference in cross-section between two columns

having n and (n + 1) atoms. The difference in expected values equals

ΔCSn,n+1. However, when ΔCSn,n+1 increases, the variances also increase.

The variances are calculated from the probability distribution given by Eq.

(15) and can be expressed as:

varH0

[
ωCS

]
= CSn · dx2 (20)

varH1

[
ωCS

]
= (CSn +ΔCSn,n+1) · dx2 (21)

Since the width of the distribution is proportional to
√
CSn and

√
CSn +ΔCSn,n+1

for H0 and H1 respectively, the probability of error will become smaller for

increasing ΔCSn,n+1, that is when the difference in cross-section between two

columns increases.

2.4. STEM images

As a third measure to count the number atoms the STEM images of the

atomic column are considered. When assuming that the pixels in a STEM

image are statistically independent electron counting results, the conditional

joint probability function for a STEM image of an atom column is given by:

p(ωIm;Hi) =
K∏
k=1

L∏
l=1

(λHi,kl)
ωkl

ωkl!
exp (−λHi,kl) . (22)

Since we have a joint probability function for the stochastic variable ωIm

of the STEM image of an atomic column, it is not possible to compute the
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probability of error directly from the overlapping areas of p(ωIm;H0) and

p(ωIm;H1). However, as shown by Gonnissen et al. [39], it is possible to

calculate this probability of error analytically by reformulating the decision

rule using the so-called log-likelihood ratio ln LR(ωIm). After reformulation

of Eq. (3), we then decide H1 if

ln LR(ωIm) ≡ ln

(
p(ωIm;H1)

p(ωIm;H0)

)
> ln(1) = 0, (23)

otherwise H0 is decided, for equal prior probabilities. This corresponds to

choosing the hypothesis for which the log-likelihood function is maximal.

The function LR(ω) is called the likelihood ratio since it indicates for each

set of observations of ωIm the likelihood of H1 versus the likelihood of H0.

Given the decision rule of Eq. (23), the expression for the probability of error

Pe given by Eq. (2), can be rewritten as follows:

Pe =
1

2
P (H0|H1) +

1

2
P (H1|H0)

=
1

2
P (ln LR(ω) < 0|H1) +

1

2
P (ln LR(ω) > 0|H0) . (24)

When using the conditional joint probability function for STEM images given

by Eq. (22), the log-likelihood ratio defined by Eq. (23) can be rewritten as

ln LR(ωIm) =
K∑
k=1

L∑
l=1

(
ωkl ln

(
λH1,kl

λH0,kl

)
− λH1,kl + λH0,kl

)
. (25)

Following the central limit theorem, the log-likelihood ratio tends to be nor-

mally distributed:

p(ln LR(ωIm);Hi) =
1

σHi

√
2π

exp

(
−
(
ln LR(ωIm)− μHi

)2
2σHi

2

)
(26)
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For STEM images the expected value and variance characterising this normal

distribution of ln LR(ωIm), can be computed from Eq. (25) when assuming

Hi to be true, giving the following results:

μHi
= EHi

[
ln LR(ωIm)

]
=

K∑
k=1

L∑
l=1

(
λHi,kl ln

λH1,kl

λH0,kl

− λH1,kl + λH0,kl

)
, (27)

σHi

2 = varHi

[
ln LR(ωIm)

]
=

K∑
k=1

L∑
l=1

λHi,kl

(
ln

λH1,kl

λH0,kl

)2

. (28)

In this derivation, use is made of the property that the variance of a Poisson

distributed variable equals its expectation value, EHi
[ωkl] = varHi

[ωkl] =

λHi,kl. The explicit description of the distribution of the log-likelihood ratio

now enables us to unambiguously compute the probability of error given by

Eq. (24), resulting in the following general expression:

Pe =
1

2

[
Φ

(−μH1

σH1

)
+ Φ

(
μH0

σH0

)]
(29)

with Φ (±μ/σ) the cumulative distribution function of the standard normal

distribution evaluated at ±μ/σ. The meaning of the expected value μHi
and

variance σHi
2 characterising the normal distributions of ln LR(ωIm) given by

Eq. (26) under both hypotheses, is illustrated in Fig. 1(c) based on STEM

images for a Sr column consisting of either 30 or 31 atoms. The decision rule

is also clarified: H0 is decided for ln LR(ωIm) < 0, otherwise H1 is decided

to be correct. The dark grey region denotes the error which is made if H0

is chosen while H1 is correct, and vice versa for the light grey region. It is

clear from this figure that the probability of error here also corresponds to

the overlap between both distributions.
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2.5. Multiple hypothesis test for atom-counting

A binary hypothesis test is no longer adequate if different choices of the

two hypotheses lead to different designs. Therefore, the approach of binary

hypothesis testing for atom-counting is extended towards multiple hypothesis

testing. The multiple hypothesis test will be described for the scattering

cross-sections, which are often used in practice [19, 20, 47]. The number of

hypotheses in the multiple hypothesis test equals the maximum number of

atoms in a column which depends on the sample under study. In this case,

we want to differentiate between 1, 2, . . . ,M atoms in a projected atomic

column and therefore we decide among M possible hypotheses:

{H0,H1, . . . ,HM−1}. (30)

In practice, the number of hypotheses that is included for the decision rule,

is chosen sufficiently large such that the observed scattering cross-section for

sure corresponds to one of the considered hypotheses; M will be typically

larger than the unknown thickness of the sample. Equivalent to Eq. (3), the

decision rule is now defined such that the probability of error is minimised.

The minimum probability of error decision rule is then to decide Hk if

p(ωCS;Hk)P (Hk) > p(ωCS;Hi)P (Hi) ∀i �= k. (31)

For equal prior probabilities P (Hi) = 1/M , which we assume here, we decide

Hk if

p(ωCS;Hk) > p(ωCS;Hi) ∀i �= k. (32)

An illustration of the conditional probability functions of a multiple hypoth-

esis test consisting of M = 30 hypotheses is given in Fig. 2. Analogously
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to the binary test of section 2.3, the probability of error for the scattering

cross-section for a multiple hypothesis test can be calculated from the over-

lapping areas of the conditional probability functions (weighted by their prior

probability):

Pe =
M−1∑
i=0

M−1∑
j=0

CijP (Hi|Hj)P (Hj), (33)

where

Cij =

⎧⎨
⎩ 1 i �= j

0 i = j
(34)

The number of terms for the calculation of the probability of error of a

multiple hypothesis test used in Eq. (33) equals M(M − 1). Therefore, it

is more efficient to calculate Pc = 1 − Pe, where Pc is the probability of a

correct decision. In this case, the number of terms in the summation reduces

to M :

Pc =
M−1∑
i=0

P (Hi|Hi)P (Hi) (35)

This expression can be calculated analytically for the scattering cross-sections,

since their conditional probability functions are well-known from Eq. (15).

The probability of a correct decision for equal prior probabilities P (Hi) =
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1/M then corresponds to:

Pc =
1

M

[
F

(
xCS0,1

dx2
, λHs

0

)
+

F

(
xCS1,2

dx2
, λHs

1

)
− F

(
xCS1,0

dx2
, λHs

1

)
+

F

(
xCS2,3

dx2
, λHs

2

)
− F

(
xCS2,1

dx2
, λHs

2

)
+

. . .+(
1− F

(
xCSM−1,M−2

dx2
, λHs

M−1

))]
(36)

where Hs
i denotes the sorted hypotheses according to the expected values

of the scattering cross-sections, xCSi,j = xCSj,i corresponds to the intersec-

tion between two neighbouring probability distribution functions which is

given by Eq. (18), λHi
corresponds to Eq. (14), and F

(
xCSi,i

dx2 , λHs
i

)
equals

the Poisson cumulative distribution function with parameter λHs
i
evaluated

at xCSi,i/dx2. This allows us to calculate analytically the probability of error

Pe for atom-counting. If the decision for a certain hypothesis between M

different hypotheses is completely random, the probability for a correct de-

cision equals 1/M when assuming equal prior probabilities. Then, it follows

that for a multiple hypothesis test withM different hypotheses the maximum

value for the probability of error equals (M − 1)/M .

The optimal experiment design can now be investigated for a realistic sim-

ulation experiment, using the analytical expressions for the probability of

error for both the binary and the multiple hypothesis test. The obtained

results for the proposed measures (peak-intensities, scattering cross-sections,

or STEM images) will be compared.
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Figure 2: Conditional probability functions for a multiple hypothesis test of M = 30 for

a Sr column with D = 105 e−/Å2, for a detector collection range of 60 − 100 mrad and

settings of Table 1 which are explained in section 3.1.

3. Optimal experiment design

3.1. Simulation experiments

In this section, the results will be presented of a simulation study that

has been performed in order to investigate the probability of error defined in

Section 2 to evaluate and optimise the inner and outer detector radii of an

annular STEM detector in terms of quantitative atom-counting. Simulations

of STEM images are performed for a 30 nm thick SrTiO3 crystal, i.e. a

thickness of 75 atoms, using the software STEMsim [42], for an aberration-

corrected microscope at Scherzer defocus. The multislice approach is used in

which thermal diffuse scattering is included as an absorptive potential. The

simulation parameters which are used are listed in Table 1.

3.2. Results from binary hypothesis test

In Fig. 3 the results for the probability of error from a binary hypothesis

test with equal prior probabilities, defined by Eq. (2) are shown as a function
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Parameter Symbol Value

Slice thickness zslice (Å) 1.95

Debye-Waller factor Sr B (Å2) 0.6214

Debye-Waller factor Ti B (Å2) 0.4398

Debye-Waller factor O B (Å2) 0.7323

Acceleration voltage V (kV) 300

Defocus ε (Å) -14.03

Spherical aberration Cs (mm) 0.001

Spherical aberration of fifth order C5 (mm) 0

Semi-convergence angle α (mrad) 20

Probe sampling distance dx (Å) 0.1562

FWHM of the source image FWHMs (Å) 0.7

Size of the supercell Na ×Nb (nm
2) 4.3 × 4.3

Total number of scanned pixels K × L 25 × 25

Table 1: Parameter values used in the simulation software STEMsim [42].

of the number of atoms nH0 in a Sr column for the three proposed measures

and for two different incident electron doses. The dose only changes the

value of the probability of error; for a higher electron dose, the probability of

error becomes lower. It can be seen that the probability of error increases for

an increasing number of atoms. This means that it is easier to differentiate

between two atomic columns containing 1 and 2 atoms than to differenti-

ate between 75 and 76 atoms in a column. Another important conclusion

that can be drawn from this figure concerns the different results for the three

measures which we consider. The probability of error for the scattering cross-
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sections (red dots) using Eq. (17) almost equals the probability of error for

the STEM images (blue squares) for which Eq. (29) is used, whereas the

probability of error for the peak intensities (green crosses), computed using

Eq. (9) is significantly larger. This means that the scattering cross-sections

contain almost the same amount of information as the images themselves in

terms of atom-counting, provided that the scattering cross-sections mono-

tonically increase with number of atoms. Thus, the detailed profiles of the

atomic columns do not add extra information for atom-counting. These dif-

ferences can only be detected when using the images, since the scattering

cross-sections sum all the pixel values in a Voronoi cell in the image into one

number defined by Eq. (11). This result is very beneficial since the scatter-

ing cross-sections are now often used as a measure to analyse the number of

atoms in an atomic column and in addition the scattering cross-sections are

far more robust to compare with simulations. Scattering cross-sections are

independent of the FWHM of the source size used, the defocus and other

parameters [49, 51].

In Fig. 4 the probability of error is shown as a function of the inner detector

radius with a fixed outer detector radius of 100 mrad. The incident electron

dose is chosen such that the values for the probability of error range between

0 and 0.5. The optimal inner angle is not affected by the selected electron

dose. In Fig. 4(a), results for Pe are shown for nH0 = 1 for the three differ-

ent measures for a Sr column. From this, we can conclude that the optimal

inner detector radius equals 21 mrad since the probability of error reaches

a minimum here, suggesting that imaging in the LAADF STEM regime is

optimal for atom-counting. However, when choosing nH0 = 75, the optimal
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inner detector radius increases to 28 mrad, as can be seen in Fig. 4(b). For

this value of nH0 = 75, 21− 100 mrad can definitely not be considered as an

optimum, whereas for nH0 = 1 an inner detector radius of 28 mrad is near-

optimal for atom-counting. Because the optimal detector design depends

on the choice of hypotheses, we should move on toward multiple hypothesis

testing as already suggested in the theory part in section 2.
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(a) D = 104 e−/Å2
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(b) D = 105 e−/Å2

Figure 3: Probability of error as a function of the number of atoms in a Sr column with

D = 105 e−/Å2, for a detector collection range of 60−100 mrad using a binary hypothesis

test.

3.3. Results from multiple hypothesis test

When using a multiple hypothesis test, all possible numbers of atoms up

to a certain thickness of the atom column are considered. Since we demon-

strated in section 3.2 that for atom-counting the scattering cross-sections con-

tain almost the same amount of information as the images, we proceed here

with the scattering cross-sections, which are often used in practice [20, 20, 25].

It can also be shown that in the case of a multiple hypothesis test the general
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(a) nH0 = 1 and D = 103 e−/Å2
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(b) nH0 = 75 and D = 106 e−/Å2

Figure 4: Probability of error for a Sr column as a function of the inner detector angle

with a fixed outer detector radius (100 mrad) using a binary hypothesis test.

optimal detector design does not drastically changes when using STEM im-

ages. Using Eq. (36), it is possible to determine the optimal detector design

for the STEM detector in terms of inner and outer detector radius. Therefore

we calculate the probability of error for the different atomic columns in the

SrTiO3 crystal for a multiple hypothesis test with M = 15 hypotheses, i.e.

for a thickness up to 15 atoms, and for a test with 75 hypotheses, i.e. for

a thickness up to M = 75 atoms and assuming equal prior probabilities for

the different hypotheses. Since the TiO column exists of an equal number

of Ti and O atoms, only counting of one type of atoms is considered. The

results are shown in Fig. 5 for the scattering cross-sections. The optimal

detector angles do not critically depend on the atom type. For a thickness

of 15 atoms, the optimal detector design is LAADF STEM with an inner

detector radius of 21 mrad and an outer detector radius of 100 mrad. The

optimal detector design changes for a thickness of 75 atoms. Here we find a

minimum for the probability of error for a Sr column at 28 − 100 mrad, for
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Figure 5: Probability of error for scattering cross-sections as a function of inner and outer

detector angle for the three different atom columns in SrTiO3 for D = 105 e−/Å2 using a

multiple hypothesis test. The upper and lower row show the results when the goal is to

find the optimal settings when counting up to M = 15 and M = 75 atoms, respectively.

a TiO column at 33− 100 mrad and for a O column at 30− 100 mrad.
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Figure 6: Probability of error as a function of incident electron dose for detector angles

30− 100 mrad and thickness of M = 75 atoms using a multiple hypothesis test.
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The actual numbers of the probability of error not only depend on the

choice of the detector but also on the incident electron dose. Once the optimal

detector design has been derived, one can then be interested to investigate

the lowest possible incident electron dose for which the probability of error

reaches an acceptable low value. Therefore the probability of error is com-

puted as a function of the incident electron dose for scattering cross-sections,

for the three different atom columns present in SrTiO3. The results are

shown in Fig. 6. It is clear from this figure, as one could expect, that the

probability of error decreases for an increasing electron dose. If a maximum

probability of error of 20% would be taken as acceptable, then an electron

dose of 105 e−/Å2 would be necessary. This can be of great importance if one

wants to reduce beam damage but at the same time still obtain an acceptable

precision to count atoms.

4. Discussion

In order to understand the different obtained optimal designs for the dif-

ferent thicknesses shown in Figs. 4 and 5, the values of the integrated scatter-

ing cross-sections are investigated for three different detector designs for a Sr

column. In Fig. 7(a) the normalised integrated scattering cross-sections are

shown as a function of thickness, i.e. the number of atoms in a Sr column, for

three different detector collection ranges. The red dots show the behaviour of

the scattering cross-sections for a collection range of 21− 100 mrad, the blue

squares give the result for a detector collection range of 30− 100 mrad, and

the green crosses show the result for a detector ranging from 60 to 100 mrad.

There is a clear difference in the results for the three detector settings, from
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which we can now understand the optimal designs shown in Fig. 5. Up to

a thickness of 20 atoms in a Sr column, there is a monotone increase in the

values of the integrated scattering cross-sections. However it is clear from

the image that for a detector collection range of 21− 100 mrad, i.e. LAADF

STEM, this increase is much steeper, which means that for this detector

setting ΔCSn,n+1 from Eq. (19) is much larger than for the other detector

settings shown. For this reason the detection collection area of 21−100 mrad

turns out to be the optimal detector design for a Sr column of 15 atoms thick

as can seen from the upper left figure of Fig. 5,. For Sr columns thicker than

20 atoms, however, there appears to be a different behaviour in the scattering

cross-sections for a detector collection range of 21 − 100 mrad. The mono-

tone increase is interrupted by a sudden minimum, whereas for a detector

ranging from 30 − 100 mrad and from 60 − 100 mrad the scattering cross-

sections still increase as a function of thickness. This result shows us why

for a thickness of 75 atoms in a Sr column, the detector collection range of

30− 100 mrad becomes beneficial. Because the increase in scattering cross-

sections for 30 − 100 mrad is steeper compared to the 60 − 100 mrad, it is

clear that this latter will lead to a higher probability of error and therefore

does not result into the optimal design as can be seen from the bottom left

image in Fig. 5. In a similar way, the obtained optimal detector designs for

a TiO and pure O column given in Fig. 5 can be explained.

In order to understand why scattering cross-sections in the LAADF STEM

regime no longer increase monotonically with the number of atoms as com-

pared to the MAADF and HAADF regime, we consider the coherent and

incoherent contributions to the scattering cross-sections under different com-
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binations of inner and outer detector angles. The simulation software STEM-

sim allows one to save the coherent and incoherent contributions separately.

Following [52], both parts are described by different potentials which are nor-

mally summed up in order to obtain the complete signal. In Figs. 7(b),(c),

and (d), the coherent and incoherent contributions to the scattering cross-

sections are separated for the different detector collection ranges of 21 −
100 mrad, 30 − 100 mrad, and 60 − 100 mrad respectively. As can be seen

from Fig. 7(b), the coherent contribution to the scattering cross-sections

causes the non-monotonic increase. The relative contribution of the coher-

ent part to the scattering cross-section decreases when increasing the inner

detector angle as can be seen from Figs. 7(c) and (d). This analysis shows

that the optimal detector design can be understood from the values of the

scattering cross-sections, i.e. a combination of the coherent and incoherent

contributions, as a function of the number of atoms in a projected atomic

column.

5. Conclusions

In this paper, we propose to use the principles of detection theory for

quantifying the probability of error for atom-counting from HR STEM im-

ages. Therefore, binary hypothesis testing as well as multiple hypothesis

testing has been worked out for atom-counting. In this way the limits to

the precision with which the number of atoms in a projected atomic column

can be estimated are studied. The here-described method is put forward as

a powerful tool that can be used to optimise the design of an experiment

by varying experimental parameters, such as the detector collection range,
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Figure 7: (a) Integrated scattering cross-sections (fraction of incident electron dose) as a

function of the number of atoms in a Sr column. The coherent and incoherent contribution

to the scattering cross-sections are shown for (b) 21− 100 mrad, (c) 30 − 100 mrad, and

(d) 60− 100 mrad.

according to the experimental possibilities. Furthermore, the exact optimal

experiment design will depend on the material under study. Nevertheless,

the conclusions from the study conducted in this paper give some general

guidelines on optimal experiment design for atom-counting.

In this paper, it is pointed out that the use of scattering cross-sections, as

proposed in [10, 19, 20, 49], is afforded in the quantitative analysis of HR

STEM images when the goal is to count the number of atoms as precisely

as possible. Scattering cross-sections perform almost equally well as com-

pared to detailed STEM images of a projected atomic column and they even

outperform peak intensities. Furthermore, it has been shown that the prob-

ability of error increases for increasing number of atoms in the column. In

other words, it becomes more difficult to count the number of atoms in a

column if the thickness increases. One could also use the proposed method

of hypothesis testing to determine the minimally required electron dose in
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order to attain a pre-specified precision for the atom-counting. This is very

useful when one is working with beam-sensitive materials, so that a minimal

electron dose can be predicted in order to attain a pre-specified precision.

In this way, beam damage can be kept to a minimum. Finally, it is shown

that the optimal inner detector angle increases for increasing thickness when

deriving the optimal STEM detector design for atom-counting.
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