toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Prabhakara, V.; Nuytten, T.; Bender, H.; Vandervorst, W.; Bals, S.; Verbeeck, J. pdf  url
doi  openurl
  Title Linearized radially polarized light for improved precision in strain measurements using micro-Raman spectroscopy Type A1 Journal article
  Year (down) 2021 Publication Optics Express Abbreviated Journal Opt Express  
  Volume 29 Issue 21 Pages 34531  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Strain engineering in semiconductor transistor devices has become vital in the semiconductor industry due to the ever-increasing need for performance enhancement at the nanoscale. Raman spectroscopy is a non-invasive measurement technique with high sensitivity to mechanical stress that does not require any special sample preparation procedures in comparison to characterization involving transmission electron microscopy (TEM), making it suitable for inline strain measurement in the semiconductor industry. Indeed, at present, strain measurements using Raman spectroscopy are already routinely carried out in semiconductor devices as it is cost effective, fast and non-destructive. In this paper we explore the usage of linearized radially polarized light as an excitation source, which does provide significantly enhanced accuracy and precision as compared to linearly polarized light for this application. Numerical simulations are done to quantitatively evaluate the electric field intensities that contribute to this enhanced sensitivity. We benchmark the experimental results against TEM diffraction-based techniques like nano-beam diffraction and Bessel diffraction. Differences between both approaches are assigned to strain relaxation due to sample thinning required in TEM setups, demonstrating the benefit of Raman for nondestructive inline testing.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000708940500144 Publication Date 2021-10-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1094-4087 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.307 Times cited 2 Open Access OpenAccess  
  Notes Horizon 2020 Framework Programme, 823717 – ESTEEM3 ; GOA project, “Solarpaint” ; Herculesstichting;; esteem3jra; esteem3reported; Approved Most recent IF: 3.307  
  Call Number EMAT @ emat @c:irua:182472 Serial 6816  
Permanent link to this record
 

 
Author Prabhakara, V.; Jannis, D.; Guzzinati, G.; Béché, A.; Bender, H.; Verbeeck, J. url  doi
openurl 
  Title HAADF-STEM block-scanning strategy for local measurement of strain at the nanoscale Type A1 Journal article
  Year (down) 2020 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 219 Issue Pages 113099  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Lattice strain measurement of nanoscale semiconductor devices is crucial for the semiconductor industry as strain substantially improves the electrical performance of transistors. High resolution scanning transmission electron microscopy (HR-STEM) imaging is an excellent tool that provides spatial resolution at the atomic scale and strain information by applying Geometric Phase Analysis or image fitting procedures. However, HR-STEM images regularly suffer from scanning distortions and sample drift during image acquisition. In this paper, we propose a new scanning strategy that drastically reduces artefacts due to drift and scanning distortion, along with extending the field of view. It consists of the acquisition of a series of independent small subimages containing an atomic resolution image of the local lattice. All subimages are then analysed individually for strain by fitting a nonlinear model to the lattice images. The method allows flexible tuning of spatial resolution and the field of view within the limits of the dynamic range of the scan engine while maintaining atomic resolution sampling within the subimages. The obtained experimental strain maps are quantitatively benchmarked against the Bessel diffraction technique. We demonstrate that the proposed scanning strategy approaches the performance of the diffraction technique while having the advantage that it does not require specialized diffraction cameras.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000594768500006 Publication Date 2020-09-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.2 Times cited 4 Open Access OpenAccess  
  Notes A.B. D.J. and J.V. acknowledge funding through FWO project G093417N ('Compressed sensing enabling low dose imaging in transmission electron microscopy') from the Flanders Research Fund. J.V acknowledges funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 823717 – ESTEEM3. The Qu-Ant-EM microscope and the direct electron detector used in the diffraction experiments was partly funded by the Hercules fund from the Flemish Government. This project has received funding from the GOA project “Solarpaint” of the University of Antwerp. GG acknowledges support from a postdoctoral fellowship grant from the Fonds Wetenschappelijk Onderzoek – Vlaanderen (FWO). Special thanks to Dr. Thomas Nuytten, Prof. Dr. Wilfried Vandervorst, Dr. Paola Favia, Dr. Olivier Richard from IMEC, Leuven and Prof. Dr. Sara Bals from EMAT, Antwerp for their continuous support and collaboration with the project and to the IMEC processing group for the device fabrication. Approved Most recent IF: 2.2; 2020 IF: 2.843  
  Call Number EMAT @ emat @c:irua:172485 Serial 6404  
Permanent link to this record
 

 
Author Mehta, A.N.; Gauquelin, N.; Nord, M.; Orekhov, A.; Bender, H.; Cerbu, D.; Verbeeck, J.; Vandervorst, W. pdf  url
doi  openurl
  Title Unravelling stacking order in epitaxial bilayer MX₂ using 4D-STEM with unsupervised learning Type A1 Journal article
  Year (down) 2020 Publication Nanotechnology Abbreviated Journal Nanotechnology  
  Volume 31 Issue 44 Pages 445702  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Following an extensive investigation of various monolayer transition metal dichalcogenides (MX2), research interest has expanded to include multilayer systems. In bilayer MX2, the stacking order strongly impacts the local band structure as it dictates the local confinement and symmetry. Determination of stacking order in multilayer MX(2)domains usually relies on prior knowledge of in-plane orientations of constituent layers. This is only feasible in case of growth resulting in well-defined triangular domains and not useful in-case of closed layers with hexagonal or irregularly shaped islands. Stacking order can be discerned in the reciprocal space by measuring changes in diffraction peak intensities. Advances in detector technology allow fast acquisition of high-quality four-dimensional datasets which can later be processed to extract useful information such as thickness, orientation, twist and strain. Here, we use 4D scanning transmission electron microscopy combined with multislice diffraction simulations to unravel stacking order in epitaxially grown bilayer MoS2. Machine learning based data segmentation is employed to obtain useful statistics on grain orientation of monolayer and stacking in bilayer MoS2.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000561424400001 Publication Date 2020-07-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.5 Times cited 13 Open Access OpenAccess  
  Notes ; J.V. acknowledges funding from FLAG-ERA JTC2017 project 'Graph-Eye'. N.G. acknowledges funding from GOA project 'Solarpaint' of the University of Antwerp. This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 823717-ESTEEM3. 4D STEM data was acquired on a hybrid pixel detector funded with a Hercules fund 'Direct electron detector for soft matter TEM' from the Flemish Government. M. N. acknowledges funding from a Marie Curie Fellowship agreement No 838001. We thank Dr Jiongjiong Mo and Dr Benjamin Groven for developing the CVD-MoS<INF>2</INF> growth on sapphire and providing the material used in this article. ; Approved Most recent IF: 3.5; 2020 IF: 3.44  
  Call Number UA @ admin @ c:irua:171119 Serial 6649  
Permanent link to this record
 

 
Author Mehta, A.N.; Mo, J.; Pourtois, G.; Dabral, A.; Groven, B.; Bender, H.; Favia, P.; Caymax, M.; Vandervorst, W. pdf  doi
openurl 
  Title Grain-boundary-induced strain and distortion in epitaxial bilayer MoS₂ lattice Type A1 Journal article
  Year (down) 2020 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C  
  Volume 124 Issue 11 Pages 6472-6478  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Grain boundaries between 60 degrees rotated and twinned crystals constitute the dominant type of extended line defects in two-dimensional transition metal dichalcogenides (2D MX2) when grown on a single crystalline template through van der Waals epitaxy. The two most common 60 degrees grain boundaries in MX2 layers, i.e., beta- and gamma-boundaries, introduce distinct distortion and strain into the 2D lattice. They impart a localized tensile or compressive strain on the subsequent layer, respectively, due to van der Waals coupling in bilayer MX2 as determined by combining atomic resolution electron microscopy, geometric phase analysis, and density functional theory. Based on these observations, an alternate route to strain engineering through controlling intrinsic van der Waals forces in homobilayer MX2 is proposed. In contrast to the commonly used external means, this approach enables the localized application of strain to tune the electronic properties of the 2D semiconducting channel in ultra-scaled nanoelectronic applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000526396000067 Publication Date 2020-02-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited 2 Open Access  
  Notes ; ; Approved Most recent IF: 3.7; 2020 IF: 4.536  
  Call Number UA @ admin @ c:irua:168625 Serial 6528  
Permanent link to this record
 

 
Author Prabhakara, V.; Jannis, D.; Béché, A.; Bender, H.; Verbeeck, J. url  doi
openurl 
  Title Strain measurement in semiconductor FinFET devices using a novel moiré demodulation technique Type A1 Journal article
  Year (down) 2019 Publication Semiconductor science and technology Abbreviated Journal Semicond Sci Tech  
  Volume Issue Pages  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Moiré fringes are used throughout a wide variety of applications in physics and

engineering to bring out small variations in an underlying lattice by comparing with another reference lattice. This method was recently demonstrated in Scanning Transmission Electron Microscopy imaging to provide local strain measurement in crystals by comparing the crystal lattice with the scanning raster that then serves as the reference. The images obtained in this way contain a beating fringe pattern with a local period that represents the deviation of the lattice from the reference. In order to obtain the actual strain value, a region containing a full period of the fringe is required, which results in a compromise between strain sensitivity and spatial resolution. In this paper we propose an advanced setup making use of an optimised scanning pattern and a novel phase stepping demodulation scheme. We demonstrate the novel method on a series of 16 nm Si-Ge semiconductor FinFET devices in which strain plays a crucial role in modulating the charge carrier mobility. The obtained results are compared with both Nano-beam diffraction and the recently proposed Bessel beam diffraction technique. The setup provides a much improved spatial resolution over conventional moiré imaging in STEM while at the same time being fast and requiring no specialised diffraction camera as opposed to the diffraction techniques we compare to.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000537721200002 Publication Date 2019-11-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0268-1242 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.305 Times cited 8 Open Access  
  Notes The Qu-Ant-EM microscope and the direct electron detector used in the diffraction experiments was partly funded by the Hercules fund from the Flemish Government. This project has received funding from the GOA project “Solarpaint” of the University of Antwerp. We would also like to thank Dr. Thomas Nuytten and Prof. Dr. Wilfried Vandervorst from IMEC, Leuven for their continuous support and collaboration with the project. Approved Most recent IF: 2.305  
  Call Number EMAT @ emat @c:irua:165794 Serial 5445  
Permanent link to this record
 

 
Author Vereecke, G.; De Coster, H.; Van Alphen, S.; Carolan, P.; Bender, H.; Willems, K.; Ragnarsson, L.-A.; Van Dorpe, P.; Horiguchi, N.; Holsteyns, F. pdf  doi
openurl 
  Title Wet etching of TiN in 1-D and 2-D confined nano-spaces of FinFET transistors Type A1 Journal article
  Year (down) 2018 Publication Microelectronic engineering Abbreviated Journal  
  Volume 200 Issue Pages 56-61  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In the manufacturing of multi-Vt FinFET transistors, the gate material deposited in the nano-spaces left by the removed dummy gate must be etched back in mask-defined wafer areas. Etch conformality is a necessary condition for the control of under-etch at the boundary between areas defined by masking. We studied the feasibility of TiN etching by APM (ammonia peroxide mixture, also known as SC1) in nano-confined volumes representative of FinFET transistors of the 7 nm node and below, namely nanotrenches with 1-D confinement and nanoholes with 2-D confinement. TiN etching was characterized for rate and conformality using different electron microscopy techniques. Etching in closed nanotrenches was conformal, starting and progressing all along the 2-D seam, with a rate that was 38% higher compared to a planar film. Etching in closed nanoholes proved also to be conformal and faster than planar films, but with a delay to open the 1-D seam that seemed to depend strongly on small variations in the hole diameter. However, holes between the fins at the bottom of the removed dummy gate, are not circular and do present 2-D seams that should lend themselves for an easier start of conformal etching as compared to the circular nanoholes used in this study. Finally, to explain the higher etch rate observed in nano-confined features, concentrations of ions in nanoholes were calculated taking the overlap of electrostatic double layers (EDL) into account. With negatively charged TiN walls, as measured by streaming potential on planar films, ammonium was the dominant ion in nanoholes. As no chemical reaction proposed in the literature for TiN etching matched with this finding, we proposed that the formation of ammine complexes, dissolving the formed Ti oxide, was the rate-determining step.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000449134800010 Publication Date 2018-09-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0167-9317 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:155414 Serial 8757  
Permanent link to this record
 

 
Author Mehta, A.N.; Zhang, H.; Dabral, A.; Richard, O.; Favia, P.; Bender, H.; Delabie, A.; Caymax, M.; Houssa, M.; Pourtois, G.; Vandervorst, W. pdf  doi
openurl 
  Title Structural characterization of SnS crystals formed by chemical vapour deposition Type A1 Journal article
  Year (down) 2017 Publication Journal of microscopy T2 – 20th International Conference on Microscopy of Semiconducting Materials, (MSM), APR 09-13, 2017, Univ Oxford, Univ Oxford, Oxford, ENGLAND Abbreviated Journal J Microsc-Oxford  
  Volume 268 Issue 3 Pages 276-287  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract <script type='text/javascript'>document.write(unpmarked('The crystal and defect structure of SnS crystals grown using chemical vapour deposition for application in electronic devices are investigated. The structural analysis shows the presence of two distinct crystal morphologies, that is thin flakes with lateral sizes up to 50 m and nanometer scale thickness, and much thicker but smaller crystallites. Both show similar Raman response associated with SnS. The structural analysis with transmission electron microscopy shows that the flakes are single crystals of -SnS with [010] normal to the substrate. Parallel with the surface of the flakes, lamellae with varying thickness of a new SnS phase are observed. High-resolution transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM), first-principles simulations (DFT) and nanobeam diffraction (NBD) techniques are employed to characterise this phase in detail. DFT results suggest that the phase is a strain stabilised \u0027 one grown epitaxially on the -SnS crystals. TEM analysis shows that the crystallites are also -SnS with generally the [010] direction orthogonal to the substrate. Contrary to the flakes the crystallites consist of two to four grains which are tilted up to 15 degrees relative to the substrate. The various grain boundary structures and twin relations are discussed. Under high-dose electron irradiation, the SnS structure is reduced and -Sn formed. It is shown that this damage only occurs for SnS in direct contact with SiO2. Lay description SnS is a p-type semiconductor, which has attracted significant interest for electronic devices due to its unique properties, low-toxicity and abundance of Sn in nature. Although in the past it has been most extensively studied as the absorber material in solar cells, it has recently garnered interest for application as a p-type two-dimensional semiconductor in nanoelectronic devices due to its anisotropic layered structure similar to the better known phosphorene. Tin sulphide can take the form of several phases and the electronic properties of the material depend strongly on its crystal structure. It is therefore crucial to study the crystal structure of the material in order to predict the electronic properties and gain insight into the growth mechanism. In this work, SnS crystals deposited using a chemical vapour deposition technique are investigated extensively for their crystal and defect structure using transmission electron microscopy (TEM) and related techniques. We find the presence of two distinct crystal morphologies, that is thin flakes with lateral sizes up to 50 m and nm scale thickness, and much thicker but smaller crystallites. The flakes are single crystals of -SnS and contain lamellae with varying thickness of a different phase which appear to be -SnS at first glance. High-resolution scanning transmission electron microscopy is used to characterise these lamellae where the annular bright field (ABF) mode better reveals the position of the sulphur columns. The sulphur columns in the lamellae are found to be shifted relative to the -SnS structure which indicates the formation of a new phase which is a distorted version of the phase which we tentatively refer to as \u0027-SnS. Simulations based on density functional theory (DFT) are used to model the interface and a similar shift of sulphur columns in the -SnS layer is observed which takes place as a result of strong interaction at the interface between the two phases resulting in strain transfer. Nanobeam electron diffraction (NBD) is used to map the lattice mismatch in the thickness of the flakes which reveals good in-plane matching and some expansion out-of-plane in the lamellae. Contrary to the flakes the crystallites are made solely of -SnS and consist of two to four grains which are tilted up to 15 degrees relative to the substrate. The various grain boundary structures and twin relations are discussed. At high electron doses, SnS is reduced to -Sn, however the damage occurs only for SnS in direct contact with SiO2.'));  
  Address  
  Corporate Author Thesis  
  Publisher Wiley Place of Publication Hoboken Editor  
  Language Wos 000415900300009 Publication Date 2017-09-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-2720 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.692 Times cited 2 Open Access Not_Open_Access  
  Notes Approved Most recent IF: 1.692  
  Call Number UA @ lucian @ c:irua:147692 Serial 4898  
Permanent link to this record
 

 
Author Heyne, M.H.; Chiappe, D.; Meersschaut, J.; Nuytten, T.; Conard, T.; Bender, H.; Huyghebaert, C.; Radu, I.P.; Caymax, M.; de Marneffe, J.F.; Neyts, E.C.; De Gendt, S.; doi  openurl
  Title Multilayer MoS2 growth by metal and metal oxide sulfurization Type A1 Journal article
  Year (down) 2016 Publication Journal of materials chemistry C : materials for optical and electronic devices Abbreviated Journal J Mater Chem C  
  Volume 4 Issue 4 Pages 1295-1304  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We investigated the deposition of MoS2 multilayers on large area substrates. The pre-deposition of metal or metal oxide with subsequent sulfurization is a promising technique to achieve layered films. We distinguish a different reaction behavior in metal oxide and metallic films and investigate the effect of the temperature, the H2S/H-2 gas mixture composition, and the role of the underlying substrate on the material quality. The results of the experiments suggest a MoS2 growth mechanism consisting of two subsequent process steps. At first, the reaction of the sulfur precursor with the metal or metal oxide occurs, requiring higher temperatures in the case of metallic film compared to metal oxide. At this stage, the basal planes assemble towards the diffusion direction of the reaction educts and products. After the sulfurization reaction, the material recrystallizes and the basal planes rearrange parallel to the substrate to minimize the surface energy. Therefore, substrates with low roughness show basal plane assembly parallel to the substrate. These results indicate that the substrate character has a significant impact on the assembly of low dimensional MoS2 films.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000370723300020 Publication Date 2016-01-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7526; 2050-7534 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.256 Times cited Open Access  
  Notes Approved Most recent IF: 5.256  
  Call Number UA @ lucian @ c:irua:132327 Serial 4211  
Permanent link to this record
 

 
Author Verleysen, E.; Bender, H.; Richard, O.; Schryvers, D.; Vandervorst, W. doi  openurl
  Title Compositional characterization of nickel silicides by HAADF-STEM imaging Type A1 Journal article
  Year (down) 2011 Publication Journal of materials science Abbreviated Journal J Mater Sci  
  Volume 46 Issue 7 Pages 2001-2008  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A methodology for the quantitative compositional characterization of nickel silicides by high angle annular dark field scanning transmission electron microscopy (HAADF-STEM) imaging is presented. HAADF-STEM images of a set of nickel silicide reference samples Ni3Si, Ni31Si12, Ni2Si, NiSi and NiSi2 are taken at identical experimental conditions. The correlation between sample thickness and HAADF-STEM intensity is discussed. In order to quantify the relationship between the experimental Z-contrast intensities and the composition of the analysed layers, the ratio of the HAADF-STEM intensity to the sample thickness or to the intensity of the silicon substrate is determined for each nickel silicide reference sample. Diffraction contrast is still detected on the HAADF-STEM images, even though the detector is set at the largest possible detection angle. The influence on the quantification results of intensity fluctuations caused by diffraction contrast and channelling is examined. The methodology is applied to FUSI gate devices and to horizontal TFET devices with different nickel silicides formed on source, gate and drain. It is shown that, if the elements which are present are known, this methodology allows a fast quantitative 2-dimensional compositional analysis.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000286633000002 Publication Date 2011-01-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-2461;1573-4803; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.599 Times cited 1 Open Access  
  Notes Approved Most recent IF: 2.599; 2011 IF: 2.015  
  Call Number UA @ lucian @ c:irua:88950 Serial 446  
Permanent link to this record
 

 
Author Verleysen, E.; Bender, H.; Richard, O.; Schryvers, D.; Vandervorst, W. doi  openurl
  Title Characterization of nickel silicides using EELS-based methods Type A1 Journal article
  Year (down) 2010 Publication Journal of microscopy Abbreviated Journal J Microsc-Oxford  
  Volume 240 Issue 1 Pages 75-82  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The characterization of Ni-silicides using electron energy loss spectroscopy (EELS) based methods is discussed. A series of Ni-silicide phases is examined: Ni3Si, Ni31Si12, Ni2Si, NiSi and NiSi2. The composition of these phases is determined by quantitative core-loss EELS. A study of the low loss part of the EELS spectrum shows that both the energy and the shape of the plasmon peak are characteristic for each phase. Examination of the Ni-L edge energy loss near edge structure (ELNES) shows that the ratio and the sum of the L2 and L3 white line intensities are also characteristic for each phase. The sum of the white line intensities is used to determine the trend in electron occupation of the 3d states of the phases. The dependence of the plasmon energy on the electron occupation of the 3d states is demonstrated.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000281715400009 Publication Date 2010-05-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-2720; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.692 Times cited 11 Open Access  
  Notes Approved Most recent IF: 1.692; 2010 IF: 1.872  
  Call Number UA @ lucian @ c:irua:84879 Serial 329  
Permanent link to this record
 

 
Author Ke, X.; Bals, S.; Cott, D.; Hantschel, T.; Bender, H.; Van Tendeloo, G. doi  openurl
  Title Three-dimensional analysis of carbon nanotube networks in interconnects by electron tomography without missing wedge artifacts Type A1 Journal article
  Year (down) 2010 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal  
  Volume 16 Issue 2 Pages 210-217  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The three-dimensional (3D) distribution of carbon nanotubes (CNTs) grown inside semiconductor contact holes is studied by electron tomography. The use of a specialized tomography holder results in an angular tilt range of ±90°, which means that the so-called missing wedge is absent. The transmission electron microscopy (TEM) sample for this purpose consists of a micropillar that is prepared by a dedicated procedure using the focused ion beam (FIB) but keeping the CNTs intact. The 3D results are combined with energy dispersive X-ray spectroscopy (EDS) to study the relation between the CNTs and the catalyst particles used during their growth. The reconstruction, based on the full range of tilt angles, is compared with a reconstruction where a missing wedge is present. This clearly illustates that the missing wedge will lead to an unreliable interpretation and will limit quantitative studies  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge, Mass. Editor  
  Language Wos 000276137200011 Publication Date 2010-02-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1431-9276;1435-8115; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.891 Times cited 42 Open Access  
  Notes Esteem 026019; Fwo; Iap-Vi Approved Most recent IF: 1.891; 2010 IF: 3.259  
  Call Number UA @ lucian @ c:irua:82279 Serial 3642  
Permanent link to this record
 

 
Author Ke, X.; Bals, S.; Romo Negreira, A.; Hantschel, T.; Bender, H.; Van Tendeloo, G. pdf  doi
openurl 
  Title TEM sample preparation by FIB for carbon nanotube interconnects Type A1 Journal article
  Year (down) 2009 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 109 Issue 11 Pages 1353-1359  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A powerful method to study carbon nanotubes (CNTs) grown in patterned substrates for potential interconnects applications is transmission electron microscopy (TEM). However, high-quality TEM samples are necessary for such a study. Here, TEM specimen preparation by focused ion beam (FIB) has been used to obtain lamellae of patterned samples containing CNTs grown inside contact holes. A dual-cap Pt protection layer and an extensive 5 kV cleaning procedure are applied in order to preserve the CNTs and avoid deterioration during milling. TEM results show that the inner shell structure of the carbon nanotubes has been preserved, which proves that focused ion beam is a useful technique to prepare TEM samples of CNT interconnects.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000270765800006 Publication Date 2009-07-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 21 Open Access  
  Notes Esteem 026019; Iap Approved Most recent IF: 2.843; 2009 IF: 2.067  
  Call Number UA @ lucian @ c:irua:79074 Serial 3485  
Permanent link to this record
 

 
Author Ghica, C.; Nistor, L.C.; Bender, H.; Richard, O.; Van Tendeloo, G.; Ulyashin, A. pdf  doi
openurl 
  Title TEM characterization of extended defects induced in Si wafers by H-plasma treatment Type A1 Journal article
  Year (down) 2007 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 40 Issue 2 Pages 395-400  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000243725800017 Publication Date 2007-01-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 10 Open Access  
  Notes Bil 01/73 Approved Most recent IF: 2.588; 2007 IF: 2.200  
  Call Number UA @ lucian @ c:irua:62601 Serial 3476  
Permanent link to this record
 

 
Author Ghica, C.; Nistor, L.C.; Bender, H.; Richard, O.; Van Tendeloo, G.; Ulyashin, A.; pdf  doi
openurl 
  Title Characterization of {111} planar defects induced in silicon by hydrogen plasma treatments Type A1 Journal article
  Year (down) 2006 Publication Philosophical magazine Abbreviated Journal Philos Mag  
  Volume 86 Issue 32 Pages 5137-5151  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000239756300010 Publication Date 2006-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1478-6435;1478-6443; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.505 Times cited 12 Open Access  
  Notes Bil 01/73 Approved Most recent IF: 1.505; 2006 IF: 1.354  
  Call Number UA @ lucian @ c:irua:60895 Serial 315  
Permanent link to this record
 

 
Author Nistor, L.C.; Richard, O.; Zhao, C.; Bender, H.; Van Tendeloo, G. doi  openurl
  Title Thermal stability of atomic layer deposited Zr:Al mixed oxide thin films: an in situ transmission electron microscopy study Type A1 Journal article
  Year (down) 2005 Publication Journal of materials research Abbreviated Journal J Mater Res  
  Volume 20 Issue 7 Pages 1741-1750  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000230296100012 Publication Date 2005-07-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0884-2914;2044-5326; ISBN Additional Links UA library record; WoS full record  
  Impact Factor 1.673 Times cited Open Access  
  Notes Bil 01/73; IAP V-1 Approved Most recent IF: 1.673; 2005 IF: 2.104  
  Call Number UA @ lucian @ c:irua:54884 Serial 3631  
Permanent link to this record
 

 
Author Shimizu, K.; Habazaki, H.; Bender, H.; Gijbels, R. openurl 
  Title The dawn of surface analysis that stands by the side users: ultra-thin film analysis by rf-GDOES Type A3 Journal article
  Year (down) 2004 Publication Engineering materials Abbreviated Journal  
  Volume 52 Issue 9 Pages 97-101  
  Keywords A3 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:51978 Serial 607  
Permanent link to this record
 

 
Author Nistor, L.C.; Richard, O.; Zhao, O.; Bender, H.; Stesmans, A.; Van Tendeloo, G. openurl 
  Title A microstructural study of the thermal stability of atomic layer deposited Al2O3 thin films Type A1 Journal article
  Year (down) 2003 Publication Institute of physics conference series T2 – Microscopy of semiconducting materials Abbreviated Journal  
  Volume Issue Pages 397-400  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The thermal stability of amorphous Al2O3 films (similar to8 and 80 nut thick) deposited by atomic layer deposition on HF-last and thin SiO2 covered (001) Si substrates is studied by transmission electron microscopy. The layers are in- and ex-situ annealed in the same temperature range.  
  Address  
  Corporate Author Thesis  
  Publisher Iop Place of Publication Cambridge Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0-7503-0979-2 ISBN Additional Links UA library record; WoS full record;  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:54860 Serial 2048  
Permanent link to this record
 

 
Author Tokei, Z.; Lanckmans, F.; van den Bosch, G.; Van Hove, M.; Maex, K.; Bender, H.; Hens, S.; van Landuyt, J. doi  openurl
  Title Reliability of copper dual damascene influenced by pre-clean Type P1 Proceeding
  Year (down) 2002 Publication Analysis Of Integrated Circuits Abbreviated Journal  
  Volume Issue Pages 118-123  
  Keywords P1 Proceeding; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Ieee Place of Publication New york Editor  
  Language Wos 000177689400022 Publication Date 2003-06-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 5 Open Access  
  Notes Conference name: Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:104170 Serial 2865  
Permanent link to this record
 

 
Author Ghica, C.; Nistor, L.; Bender, H.; Steegen, A.; Lauwers, A.; Maex, K.; van Landuyt, J. doi  openurl
  Title In situ transmission electron microscopy study of the silicidation process in Co thin films on patterned (001) Si substrates Type A1 Journal article
  Year (down) 2001 Publication Journal of materials research Abbreviated Journal J Mater Res  
  Volume 16 Issue 3 Pages 701-708  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The results of an in situ transmission electron microscopy study of the formation of Co-silicides on patterned (001) Si substrates are discussed. It is shown that the results of the in situ heating experiments agreed very well with the data based on standard rapid thermal annealing experiments. Fast heating rates resulted in better definition of the silicide lines. Also, better lines were obtained for samples that received already a low-temperature ex situ anneal. A Ti cap layer gave rise to a higher degree of epitaxy in the CoSi2 silicide.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000167407200011 Publication Date 2008-03-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0884-2914;2044-5326; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.673 Times cited 4 Open Access  
  Notes Approved Most recent IF: 1.673; 2001 IF: 1.539  
  Call Number UA @ lucian @ c:irua:103926 Serial 1588  
Permanent link to this record
 

 
Author Stuer, C.; van Landuyt, J.; Bender, H.; Rooyackers, R.; Badenes, G. pdf  doi
openurl 
  Title The use of convergent beam electron diffraction for stress measurements in shallow trench isolation structures Type A1 Journal article
  Year (down) 2001 Publication Materials science in semiconductor processing Abbreviated Journal Mat Sci Semicon Proc  
  Volume 4 Issue 1/3 Pages 117-119  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Shallow trench isolation (STI) is a promising technology for the isolation structures of the new generation of ULSI devices with dimensions below 0.18 mum. The various processing steps cause stress fields in STI structures, which can lead to defect formation in the silicon substrate. In their turn, stress fields affect the electrical parameters and the reliability of devices. Convergent beam electron diffraction (CBED) is used in this study to examine the influence of a wet and a dry pre-gate oxidation on the stress distribution around STI structures. The measurements are performed on STI structures with different width and spacing. CBED analysis is compared with bright-field TEM images. Defects are observed in high-strain areas of small isolated structures. (C) 2001 Elsevier Science Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000167727200028 Publication Date 2002-10-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1369-8001; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.359 Times cited 6 Open Access  
  Notes Approved Most recent IF: 2.359; 2001 IF: 0.419  
  Call Number UA @ lucian @ c:irua:94968 Serial 3602  
Permanent link to this record
 

 
Author Hens, S.; van Landuyt, J.; Bender, H.; Boullart, W.; Vanhaelemeersch, S. pdf  doi
openurl 
  Title Chemical and structural analysis of etching residue layers in semiconductor devices with energy filtering transmission electron microscopy Type A1 Journal article
  Year (down) 2001 Publication Materials science in semiconductor processing Abbreviated Journal Mat Sci Semicon Proc  
  Volume 4 Issue 1/3 Pages 109-111  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The use of an energy-filtering held emission gun transmission electron microscope (CM30 FEG Ultratwin) allows, apart from imaging morphologies down to nanometer scale, the fast acquisition of high-resolution element distributions. Electrons that have lost energy corresponding to characteristic inner-shell loss edges are used to form the element maps. The production of Ultra Large-Scale Integration (ULSI) devices with dimensions below 0.25 mum requires among others the formation of a multilayer metallization scheme by means of repeatedly applying the deposition and etching of dielectrics and metals. In this work the evolution of the surface chemical species on etched Al lines in a post-etch cleaning process has been investigated by energy filtering transmission electron microscopy, with the aim to understand the role of each process step on the removal of the etching residues. (C) 2001 Elsevier Science Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000167727200026 Publication Date 2002-10-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1369-8001; ISBN Additional Links UA library record; WoS full record  
  Impact Factor 2.359 Times cited Open Access  
  Notes Approved Most recent IF: 2.359; 2001 IF: 0.419  
  Call Number UA @ lucian @ c:irua:94967 Serial 343  
Permanent link to this record
 

 
Author Teodorescu, V.; Nistor, L.; Bender, H.; Steegen, A.; Lauwers, A.; Maex, K.; van Landuyt, J. pdf  doi
openurl 
  Title In situ transmission electron microscopy study of Ni silicide phases formed on (001) Si active lines Type A1 Journal article
  Year (down) 2001 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 90 Issue 1 Pages 167-174  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The formation of Ni silicides is studied by transmission electron microscopy during in situ heating experiments of 12 nm Ni layers on blanket silicon, or in patterned structures covered with a thin chemical oxide. It is shown that the first phase formed is the NiSi2 which grows epitaxially in pyramidal crystals. The formation of NiSi occurs quite abruptly around 400 degreesC when a monosilicide layer covers the disilicide grains and the silicon in between. The NiSi phase remains stable up to 800 degreesC, at which temperature the layer finally fully transforms to NiSi2. The monosilicide grains show different epitaxial relationships with the Si substrate. Ni2Si is never observed. (C) 2001 American Institute of Physics.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000169361100023 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 97 Open Access  
  Notes Approved Most recent IF: 2.068; 2001 IF: 2.128  
  Call Number UA @ lucian @ c:irua:102855 Serial 1587  
Permanent link to this record
 

 
Author Stuer, C.; van Landuyt, J.; Bender, H.; de Wolf, I.; Rooyackers, R.; Badenes, G. pdf  doi
openurl 
  Title Investigation by convergent beam electron diffraction of the stress around shallow trench isolation structures Type A1 Journal article
  Year (down) 2001 Publication Journal of the electrochemical society Abbreviated Journal J Electrochem Soc  
  Volume 148 Issue 11 Pages G597-G601  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Convergent beam electron diffraction (CBED) is used in this study to investigate the stress distribution around shallow trench isolation (STI) structures. Attention is given to the influence of the different processing parameters and the width and spacing of the structures. The use of a wet or a dry pregate oxidation is found to have a strong influence on the stress behavior. Isolated lines show more stress, leading to the formation of defects in the silicon substrate if a wet pregate oxidation is used. The CBED analyses are compared with micro-Raman and bright-field transmission electron microscopy measurements. (C) 2001 The Electrochemical Society.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000171653100038 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-4651; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.259 Times cited 13 Open Access  
  Notes Approved Most recent IF: 3.259; 2001 IF: 2.033  
  Call Number UA @ lucian @ c:irua:103394 Serial 1725  
Permanent link to this record
 

 
Author Stuer, G.; Bender, H.; van Landuyt, J.; Eyben, P. openurl 
  Title Stress analysis with convergent beam electron diffraction around NMOS transistors Type P1 Proceeding
  Year (down) 2001 Publication Abbreviated Journal  
  Volume Issue Pages 359-360  
  Keywords P1 Proceeding; Electron microscopy for materials research (EMAT); Internet Data Lab (IDLab)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Princeton University Press Place of Publication Princeton, N.J. Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1-58949-003-7 ISBN Additional Links UA library record; WoS full record;  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:95736 Serial 3176  
Permanent link to this record
 

 
Author Stuer, C.; Steegen, A.; van Landuyt, J.; Bender, H.; Maex, K. openurl 
  Title Characterisation of the local stress induced by shallow trench isolation and CoSi2 silicidation Type A1 Journal article
  Year (down) 2001 Publication Institute of physics conference series Abbreviated Journal  
  Volume Issue 169 Pages 481-484  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract With further down-scaling below 0.25mum technologies, CoSi2 is replacing TiSi2 because of its superior formation chemistry on narrow lines and favourable stress behaviour. Shallow trench isolation (STI) is used as the isolation technique in these technologies. In this study, convergent beam electron diffraction (CBED) measurements and finite element modelling (FEM) are performed to evaluate the local stress components in the silicon substrate, induced in STI structures with a 45 nm or a 85 nm CoSi2 silicidation. High compressive stresses in the active area and tensile stress around the trench corners are observed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0-7503-0818-4 ISBN Additional Links UA library record; WoS full record;  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:95163 Serial 311  
Permanent link to this record
 

 
Author Nistor, L.; Bender, H.; van Landuyt, J.; Nemeth, S.; Boeve, H.; De Boeck, J.; Borghs, G. openurl 
  Title HREM investigation of a Fe/GaN/Fe tunnel junction Type A1 Journal article
  Year (down) 2001 Publication Institute of physics conference series T2 – Royal-Microscopical-Society Conference on Microscopy of Semiconducting, Materials, MAR 25-29, 2001, Univ of Oxford, Oxford, England Abbreviated Journal  
  Volume Issue 169 Pages 53-56  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The structure of Fe/GaN/Fe ferromagnetic electrodes is studied by high resolution transmission electron microscopy. The layers grow epitaxially on the GaAs substrate with the top Fe layer 90degrees rotated compared to the bottom one. The interfaces are quite rough. There is an indication of the possible occurrence of Fe3GaAs formation on the GaAs interface.  
  Address  
  Corporate Author Thesis  
  Publisher IOP Publishing Place of Publication Bristol Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0-7503-0818-4 ISBN Additional Links UA library record; WoS full record;  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:95715 Serial 1503  
Permanent link to this record
 

 
Author Hens, S.; Stuer, C.; Bender, H.; Loo, R.; van Landuyt, J. openurl 
  Title Quantitative EFTEM study of germanium quantum dots Type P1 Proceeding
  Year (down) 2001 Publication Abbreviated Journal  
  Volume Issue Pages 345-346  
  Keywords P1 Proceeding; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Rinton Press Place of Publication Princeton Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1-58949-003-7 ISBN Additional Links UA library record; WoS full record;  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:95716 Serial 2753  
Permanent link to this record
 

 
Author Hens, S.; Bender, H.; Donaton, R.A.; Maex, K.; Vanhaelemeersch, S.; van Landuyt, J. openurl 
  Title EFTEM study of plasma etched low-k Si-O-C dielectrics Type A1 Journal article
  Year (down) 2001 Publication Institute of physics conference series T2 – Royal-Microscopical-Society Conference on Microscopy of Semiconducting, Materials, MAR 25-29, 2001, UNIV OXFORD, OXFORD, ENGLAND Abbreviated Journal  
  Volume Issue 169 Pages 415-418  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Materials with low dielectric constant ("low-k'') in combination with Cu metallization are replacing the oxide based dielectrics with Al metallization in future generations of micro-electronic devices. In this work, a carbon doped oxide low-k dielectric material is studied after different kinds of etch/strip steps in single damascene Cu. filled line structures. Interline capacitance measurements indicate a dependence of the dielectric constant on the strip conditions. EFTEM is used to study the composition of the dielectric material and the modification of the low-k material at the sidewall of the etched structures for the various treatment conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0-7503-0818-4; 0951-3248 ISBN Additional Links UA library record; WoS full record;  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:103432 Serial 877  
Permanent link to this record
 

 
Author Nistor, L.; Bender, H.; Vantomme, A.; Wu, M.F.; van Landuyt, J.; O'Donnell, K.P.; Martin, R.; Jacobs, K.; Moerman, I. pdf  doi
openurl 
  Title Direct evidence of spontaneous quantum dot formation in a thick InGaN epilayer Type A1 Journal article
  Year (down) 2000 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 77 Issue 4 Pages 507-509  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We report a direct observation of quantum dots formed spontaneously in a thick InGaN epilayer by high resolution transmission electron microscopy. Investigation of a (280 nm thick) In0.22Ga0.78N single layer, emitting in the blue/green spectral region, reveals quantum dots with estimated sizes in the range of 1.5-3 nm. Such sizes are in very good agreement with calculations based on the luminescence spectra of this specimen. (C) 2000 American Institute of Physics. [S0003-6951(00)00930-X].  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000088225400016 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 44 Open Access  
  Notes Approved Most recent IF: 3.411; 2000 IF: 3.906  
  Call Number UA @ lucian @ c:irua:103448 Serial 712  
Permanent link to this record
 

 
Author Li, H.; Bender, H.; Conard, T.; Maex, K.; Gutakovskii, A.; van Landuyt, J.; Froyen, L. pdf  doi
openurl 
  Title Interaction of a Ti-capped Co thin film with Si3N4 Type A1 Journal article
  Year (down) 2000 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 77 Issue 26 Pages 4307-4309  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The reaction of a Ti (8 nm) capped Co film (15 nm) with a Si3N4 layer (150 nm) is studied after rapid thermal annealing at 660 degreesC for 120 s in a N-2 ambient. X-ray photoelectron spectroscopy, transmission electron microscopy, electron energy-loss spectroscopy, and Auger electron spectroscopy are used to study the reaction products. Combining the results of the different analyses yields a layer stack consisting of: TiO2/TiO/unreacted Co/(Ti,Co)(2)N/Co2Si, followed by amorphous Si3N4. The reaction mechanisms are discussed. Conclusions concerning the risk for degradation of nitride spacers in advanced devices are drawn. (C) 2000 American Institute of Physics. [S0003-6951(00)05248-7].  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000166120500021 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 3 Open Access  
  Notes Approved Most recent IF: 3.411; 2000 IF: 3.906  
  Call Number UA @ lucian @ c:irua:104225 Serial 1683  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: