
This item is the archived peer-reviewed author-version of:

Unravelling stacking order in epitaxial bilayer MX₂ using 4D-STEM with unsupervised learning

Reference:
Mehta Ankit Nalin, Gauquelin Nicolas, Nord Magnus, Orekhov Andrey, Bender Hugo, Cerbu Dorin, Verbeeck Johan, Vandervorst Wilfried.- Unravelling stacking
order in epitaxial bilayer MX₂ using 4D-STEM with unsupervised learning
Nanotechnology - ISSN 0957-4484 - 31:44(2020), 445702 
Full text (Publisher's DOI): https://doi.org/10.1088/1361-6528/ABA5B6 
To cite this reference: https://hdl.handle.net/10067/1711190151162165141

Institutional repository IRUA

https://repository.uantwerpen.be


Nanotechnology

ACCEPTED MANUSCRIPT

Unravelling stacking order in epitaxial bilayer MX2 using 4D-STEM with
unsupervised learning
To cite this article before publication: Ankit Nalin Mehta et al 2020 Nanotechnology in press https://doi.org/10.1088/1361-6528/aba5b6

Manuscript version: Accepted Manuscript

Accepted Manuscript is “the version of the article accepted for publication including all changes made as a result of the peer review process,
and which may also include the addition to the article by IOP Publishing of a header, an article ID, a cover sheet and/or an ‘Accepted
Manuscript’ watermark, but excluding any other editing, typesetting or other changes made by IOP Publishing and/or its licensors”

This Accepted Manuscript is © 2020 IOP Publishing Ltd.

 

During the embargo period (the 12 month period from the publication of the Version of Record of this article), the Accepted Manuscript is fully
protected by copyright and cannot be reused or reposted elsewhere.
As the Version of Record of this article is going to be / has been published on a subscription basis, this Accepted Manuscript is available for reuse
under a CC BY-NC-ND 3.0 licence after the 12 month embargo period.

After the embargo period, everyone is permitted to use copy and redistribute this article for non-commercial purposes only, provided that they
adhere to all the terms of the licence https://creativecommons.org/licences/by-nc-nd/3.0

Although reasonable endeavours have been taken to obtain all necessary permissions from third parties to include their copyrighted content
within this article, their full citation and copyright line may not be present in this Accepted Manuscript version. Before using any content from this
article, please refer to the Version of Record on IOPscience once published for full citation and copyright details, as permissions will likely be
required. All third party content is fully copyright protected, unless specifically stated otherwise in the figure caption in the Version of Record.

View the article online for updates and enhancements.

This content was downloaded from IP address 129.175.97.14 on 18/07/2020 at 13:05

https://doi.org/10.1088/1361-6528/aba5b6
https://creativecommons.org/licences/by-nc-nd/3.0
https://doi.org/10.1088/1361-6528/aba5b6


IOP Publishing Nanotechnology 

Journal XX (XXXX) XXXXXX  https://doi.org/XXXX/XXXX 

xxxx-xxxx/xx/xxxxxx 1 © xxxx IOP Publishing Ltd 
 

Unravelling stacking order in epitaxial 

bilayer MX2 using 4D-STEM with 

unsupervised learning 
Ankit Nalin Mehta,1,2 Nicolas Gauquelin,3,4 Magnus Nord,3,4 Andrey Orekhov,3,4 

Hugo Bender,1 Dorin Cerbu,1 Johan Verbeeck,3,4 Wilfried Vandervorst. 1,2  
1 imec, Kapeldreef 75, 3001, Leuven, Belgium 
2 KULeuven, Celestijnenlaan 200D, 3001, Leuven, Belgium 
3 EMAT, Groenenborgerlaan 171, 2020, Antwerp, Belgium 
4 NANOlab Center of Excellence, University of Antwerp, Antwerp, Belgium 

 

E-mail: Ankit.NalinMehta@imec.be 

 

Received xxxxxx 

Accepted for publication xxxxxx 

Published xxxxxx 

Abstract 

Following an extensive investigation of various monolayer transition metal dichalcogenides (MX2), research interest has 

expanded to include multilayer systems. In bilayer MX2, the stacking order strongly impacts the local band structure as it 

dictates the local confinement and symmetry.  Determination of stacking order in multilayer MX2 domains usually relies on 

prior knowledge of in-plane orientations of constituent layers. This is only feasible in case of growth resulting in well-defined 

triangular domains and not useful in-case of closed layers with hexagonal or irregularly shaped islands. Stacking order can be 

discerned in the reciprocal space by measuring changes in diffraction peak intensities. Advances in detector technology allow 

fast acquisition of high-quality four-dimensional datasets which can later be processed to extract useful information such as 

thickness, orientation, twist and strain. Here, we use 4D scanning transmission electron microscopy (4D-STEM) combined 

with multislice diffraction simulations to unravel stacking order in epitaxially grown bilayer MoS2. Machine learning based 

data segmentation is employed to obtain useful statistics on grain orientation of monolayer and stacking in bilayer MoS2.  

Keywords: Stacking order, bilayer MoS2, 4D-STEM, DF-TEM 

1. Introduction 

Molybdenum disulfide (MoS2) is a prototypical two-

dimensional transition metal dichalcogenide with great 

prospects for applications in nanoelectronics due to its unique 

optical and electronic properties.[1] It is an n-type 

semiconductor with a bandgap that ranges between 1.2 – 1.9 

eV depending on the layer thickness. [2–4] The band structure 

of MoS2 is also sensitive to the stacking order between 

adjacent layers in bilayer MoS2 due to interlayer coupling[5], 

which varies as a function of in-plane twist between the 

layers[6]. Previous studies investigating spectral differences 

in bi- or multilayer MoS2 of various stacking orders rely on 

material with large and well-defined triangular grains, 

wherein the orientation of the triangles is used to deduce the 

stacking order.[7,8] This way to deduce stacking is not useful 

in case of growth that results in a closed monolayer covered 

with irregularly shaped nuclei or hexagonal islands. More 

recent studies have demonstrated electron diffraction-based 

methods to identify thickness and stacking order in multilayer 

MX2.[9,10] These methods utilize the presence of intensity 

differences among diffraction peaks that vary with the 

stacking order and can be uniquely identified with the help of 

diffraction simulations.  

Advances in detector technology during recent years has 

enabled experiments in which a diffraction pattern is acquired 

quickly and with high sensitivity at every probe position while 

scanning with a converged electron beam in a Transmission 

Electron Microscope (STEM). This essentially results in a 

four-dimensional dataset consisting of 2 navigation 

dimensions (scan array) and 2 signal dimensions (2D 

diffraction pattern). This technique is widely known as 4D-

STEM[11–16] , although it has been referred to in literature 

with various other names such as position resolved diffraction 
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(PRD)[17,18], nanobeam electron diffraction (NBED) [19–

21], pixelated STEM[15,22]  or scanning electron 

nanodiffraction [23–25]. While this technique is commonly 

used for orientation mapping, strain mapping and 

ptychography, here, we use virtual DF imaging from a 4D 

dataset to map orientation and stacking order in the CVD 

deposited epitaxial bilayer MoS2. A semi-automated method 

to derive statistical distribution of the stacking order in the 

layers is developed. 

2. Methods 

2.1 MoS2 growth 

MoS2 is deposited on 2” c-plane sapphire using metal organic 

chemical vapor deposition (MOCVD) similar to the method 

reported by Chiappe et al..[26] Molybdenum hexacarbonyl 

(Mo(CO)6) is used as the Mo precursor and dihydrogen sulfide 

(H2S) is the S precursor while N2 is the inert carrier gas. The 

sapphire substrate is subjected to ex-situ annealing at 1175°C 

in O2 ambient for 60 min. Subsequently, the growth is carried 

out in an MOCVD reactor connected to an ASM Polygon8200 

platform. The substrate is heated under N2/H2 environment 

until a growth temperature of 1000°C is reached and allowed 

to stabilize. H2S is then introduced into the chamber followed 

by Mo(CO)6 with a precursor ratio (H2S/Mo(CO)6) of ~1.2 x 

104 while the total pressure is maintained at 20 Torr. A post-

deposition annealing at 1000°C and 90 Torr in N2/H2S 

ambient is applied on the resulting material. This results in a 

sample with 1 ML fully closed, partial coverage of 2nd layer 

islands and minor amounts of 3rd layer islands. 

2.2 Specimen preparation and TEM analysis 

The TEM specimen is prepared by transferring the material 

via ultrasonic delamination in warm water using poly(methyl 

methacrylate) (PMMA) support layer as per the procedure 

previously reported elsewhere[27]. Bright field (BF) and dark 

field (DF) TEM analysis is carried out in a TFS Titan G2 60-

300 in Imec operated at 120 kV. Atomic resolution annular 

dark-field STEM (ADF-STEM) images are acquired with a 

convergence angle of 23 mrad and STEM detector ranging 

from 25 to 153 mrad. The 4DSTEM measurements are done 

in a probe corrected Titan X-Ant-Em at 120kV in EMAT, 

University of Antwerp (Belgium) which is equipped with a 

Quantum Detectors Merlin (Medipix) direct electron detection 

camera. Experiments were carried out in microprobe STEM 

mode with a convergence angle of 1.5mrad. 

2.3 Electron diffraction simulation 

Electron diffraction simulations to calculate diffraction peak 

intensities are carried out using the multislice QSTEM 

simulation package.[28] The key simulation parameters 

chosen are close to the experimental conditions with 

acceleration voltage of 120kV and convergence angle of 1.5 

mrad.   

2.4 Cluster analysis for image segmentation 

Cluster analysis is one of the most common unsupervised 

learning methods often used to find hidden patterns and 

groups in exploratory data. A python-based machine learning 

package called sklearn [29] is applied on the data. Among the 

several clustering algorithms available in sklearn, the most 

effective model to fit our data is found to be Variational 

Bayesian Gaussian Mixture (VBGM). VBGM is a variant of 

the Gaussian mixture model. This probabilistic model 

assumes that all the data is generated from a mixture of a finite 

number of Gaussian distributions with unknown parameters. 

Variational inference is used for the estimation and is an 

extension of expectation maximization with added 

regularization based on information from prior distributions. 

The model used is a parametric mixture model estimates the 

pixel intensity values (x) from a set of correlated images (see 

Table 2) to be distributed according to a finite number of 

Gaussian mixture densities. The distribution takes the general 

form: 

𝑓(𝑥) = ∑ 𝑤𝑖𝑁(𝑥; µ𝑖 , 𝜎𝑖)

𝑘

𝑖=1

 

Where k is the number of the Gaussian components, 𝑤𝑖  is the 

weight if each Gaussian component such that: 

∑ 𝑤𝑖 = 1, 𝑎𝑛𝑑 ∀𝑖: 𝑤𝑖 ≥ 0
𝑘

𝑖
 

With 𝑁(𝑥; µ𝑖 , 𝜎𝑖) being the probability density function of the 

normal distribution. The weights, means and standard 

deviations for each of the components are defining the 

gaussian ‘blobs’ and are iteratively fit to match the 

experimental data using an expectation maximization 

algorithm resulting in assigning each pixel intensity to a 

cluster (component) that isolates a separate layer in the image. 

This image segmentation can be improved and fully 

automated by adapting a supervised learning model such as 

support vector machine (SVM), convolutional neural 

networks (CNN), random forest (RF), etc., which require 

labelled datasets as input. This is a topic of great interest for 

further development but is beyond the scope of this paper.  

3. Results 

3.1 Mapping stacking order using dark-field TEM 

The lack of in-plane inversion symmetry and the mass 

difference between the Mo and S sublattices in monolayer 

MoS2 causes an intensity asymmetry between the {10 -10} 

diffraction spots separating them into two families (Ka and 
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Kb) as indicated with the green and the red triangles in the 

schematic diffraction pattern (Figure 1 (b)). Bilayer Mo S2 can 

be stacked in 5 theoretical orders among which two, AA’ (2H) 

and AB/AC (3R) are found to be stable while the remaining 

are either meta-stable (AB’) or unstable (AA, A’B) based on 

first principle calculations.[5,30] In the following discussion, 

only the stable stacking orders (AA’, AB, AC) are considered 

since the remaining stacking orders are not observed 

experimentally using high resolution STEM imaging.  

The crystal models of MoS2 monolayer and bilayer stacked in 

AA’, AB and AC order are shown in Figure 1(a) along with 

atomic resolution ADF-STEM images of the stable bilayer 

stacking orders provided in Figure 1(b,c). Both AB and AC 

are equivalent in symmetry and commonly referred to as 3R 

phase which lacks inversion symmetry. The difference 

between AB and AC lies in the atomic order with respect to 

the electron beam direction where, by convention, the shared 

atomic columns between the two layers contain Mo on top of 

S2 for AC, whereas S2 on top of Mo for AB stacking.  Profiles 

acquired from simulated CBED patterns from the different 

structures are shown in Figure 1(d). While asymmetry 

between Ka and Kb peaks is present for both AB and AC, AC 

stacking shows a larger asymmetry compared to AB. 

Moreover, for AB stacking, Kb is larger than Ka which is 

contrary to the trend for ML and AC (IKa > IKb). In bilayer 

stacked AA’, the asymmetry almost vanishes due to 

restoration of in-plane inversion symmetry. Consequently, 

different bilayer stacking configurations can be differentiated 

using dark-field TEM images acquired from adjacent {10-10} 

spots, Figure 1 (e,f). Overlaying these images with artificial 

colors enhances the contrast variation such that stacking order 

of a grain can be discerned from its color (Figure 1 (g)). 

Grains stacked in AA’ order have equally bright intensity in 

both red and green DF-TEM images, thus appearing bright 

Figure 1: (a) Crystal structures of monolayer MoS2 and bilayer MoS2 stacked with AA’, AB and AC order. Atomic resolution ADF-STEM 
images of bilayer MoS2 in (b) AA’ (2H) stacking and (c) AB or AC (3R) stacking.  The horizontal direction is zig-zag while the vertical 
direction is arm-chair. (d) Schematic diffraction pattern where the Ka and Kb spots are highlighted with red and green triangles 
respectively. Line profiles from simulated CBED patterns (dashed grey line) corresponding to structures shown in (a). (e,f) DF-TEM images 
of MoS2 grown on sapphire from adjacent {10-10} Bragg spots. (g) Corresponding BF-TEM image from the same area, the brighter and 
darker regions are monolayer and bilayer respectively. (h) Artificially colored composite image where the colors corresponding to 60° 
twins in monolayer are dark red and green, and to stacking order in bilayer are bright yellow (AA’), bright green and bright  red (either 
AB or AC). AB or AC can be differentiated based on the color of the underlying monolayer and several regions are labelled for clarity. 

Table 1: List of common MX2 materials with their respective ∆ 
Z values 

Material ∆ Z 

WS2 42 

MoS2 10 

WSe2 6 

MoSe2 -26 

 

Figure 2: Material and stacking dependence of polarity from 
simulated CBED patterns 
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yellow. Grains stacked as AB (or AC) appear either red or 

green. Knowledge of the bottom layer’s orientation serves as 

a reference to help distinguish between AB and AC stacking 

based on orientation of the monolayer. For instance, if the 

color of the bottom monolayer is red, the brighter red islands 

are AC stacked whereas bright green are AB. In case of 

similarly stacked grains, but rotated by 60°, the assigned 

colors are obviously flipped. This technique has been 

previously applied to study the nucleation behaviour in a 

homoepitaxial system which consists of MBE grown WSe2 on 

an exfoliated WSe2 flake.[31]  

Figure 2 compares the polarity [(IKa – IKb)/(IKa + IKb)] of 

different 2H-MX2 in a monolayer and bilayer with different 

stackings using CBED simulations. The simulated materials 

are arranged in decreasing order of ∆Z (ΔZ = Z(M)-2× Z(X)) 

where a positive correlation with polarity is clearly observed 

in the monolayer case. This general trend is in good 

agreement with that reported by Deb et al.[32] However, the 

polarity for ML – WSe2 is negative despite a positive ∆Z 

which differs with Deb’s observations. This is thought to be 

due to minor differences in calculation with their simulations. 

In AA’ stacked bilayer, the polarity is close to 0 in all cases. 

Intriguingly, in a bilayer stacked in AC or the metastable AB’ 

stacking, the correlation is negative wherein the polarity 

increases with decreasing ∆Z. AB stacking, on the other hand, 

does not show any notable trends with respect to ∆Z and 

oscillates such that W based MX2 has a higher polarity 

compared to Mo based MX2. Nevertheless, the asymmetry is 

larger for AC than AB in all cases. Therefore, we can assign 

stacking to colors based on these simulations.  

3.2 Mapping stacking order using 4D-STEM 

The 4D-STEM measurements on MoS2 are conducted at 

EMAT, University of Antwerp, using a direct electron camera 

(Quantum Detectors Merlin – Medipix) mounted on a probe-

corrected Titan cubed microscope. The resulting 4D dataset 

contains a 2D diffraction pattern at every pixel of the 2D 

scanning TEM image with little noise as seen in the upper half 

of the diffraction pattern (Figure 3(b)). The lower half is the 

mean of all diffraction patterns in the 512 x 512-pixel array. 

In this lower half of fig. 3b, a small contribution from the 30° 

rotated grains is evidenced by the faint spots in between the 

intense spots of the majority orientation. Presence of 30° 

oriented areas is due to local variation in surface 

reconstruction of the sapphire substrate used for the initial 

growth of the MoS2 monolayer. Using pyXem[33], a python-

based library built to process 4D-STEM datasets, different 

parts of the diffraction patterns can be integrated using virtual 

apertures to obtain virtual BF, DF or annular DF (ADF) 

images as shown on each corner of Figure 3(b). 

Six virtual DF (vDF) images are extracted from each of the 

{10-10} diffraction spots defining 2 subsets of 3 spots 

represented by 2 triangles rotated by 60° with respect to each 

other. Similar to figure 1(g), composite images are formed by 

overlaying different pairs of these DF images in Figure 4 

either using opposite spots (also known as Friedel’s pairs), in 

top panels a, or using adjacent spots, in bottom panels b. The 

colors of bilayer islands differ significantly among these sets 

of images depending on which pair of spots is chosen. This is 

most evident in composite images from adjacent spots where 

a green island in one image appears red in the other, resulting 

in an ambiguous interpretation of stacking (AB vs AC). 

Difference in contrast between these DF images is in fact 

related to the presence of a minor sample tilt with respect to 

the e-beam during the experiment. The effect of such tilt is 

illustrated in figure 4 (c,d) by comparing simulated CBED 

patterns of AC stacked structure without any tilt to a similar 

stacking tilted by 1° in the arm-chair direction. The 

relationship between intensities of the 3 Ka spots 

I(Ka1)=I(Ka2)=I(Ka3) and the 3 Kb spots 

I(Kb1)=I(Kb2)=I(Kb3) in untilted AC simulation no longer 

holds true in presence of a small tilt where the relative 

intensities of spots change considerably I(Ka1)≠I(Ka2)≠I(Ka3) 

and similarly I(Kb1)≠I(Kb2)≠I(Kb3). Note that despite 

variation in contrast, the color of the monolayer regions 

Figure 3: (a) Schematics of 4D-STEM technique. (b) Diffraction pattern from a single pixel (top half) and mean of all pixels (bottom half) 
along with various virtual aperture positions indicated with coloured circles with the corresponding reconstructed images on each corner. 
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remains unchanged and its orientation determination is 

unaffected by the presence of tilt. 

A simple way to minimize the influence of small sample tilts 

is by summing the 3 vDF images from the red aperture 

positions and the 3 from the green, ultimately resulting in 2 

images which are overlaid with the respective artificial colors 

Ka=Ka1+Ka2+Ka3 and Kb=Kb1+Kb2+Kb3. To verify the 

efficacy of this operation in reducing minor tilt effects, CBED 

simulations are done for ML and other possible stacking 

orders in bilayer (AA’, AB, AC, AB’) with tilt up to 3° along 

both zig-zag and armchair axes. The results are shown in 

Figure 5 wherein the polarity [(IKa – IKb)/(IKa + IKb)] is plotted 

as a function of stacking order using a single pair of adjacent 

or opposite peaks in comparison to the summed peaks case. 

When considering a single pair of peaks, we find that while 

the influence of tilt is minimal for ML and bilayer with AA’ 

stacking, the polarity for other stacking orders diverges from 

Figure 4: Composite vDF images formed using (a) opposite and (b) adjacent peaks, respectively. Insets show the positions of the virtual 
aperture. Simulated CBED patterns for AC stacked MoS2 with (c) no tilt and (d) 1° tilt along the armchair axis. 

Figure 5: Influence of tilt on polarity [(IKa - IKb)/(IKa + IKb)]as a function of stacking order using a single pair of opposite peaks (left), pair of 
adjacent peaks (center) and sum of 3 Ka and 3 Kb peaks (right). The tilt axis is along the zig-zag direction for the top row and armchair 
for the bottom row as depicted in the schematic on the far left. The inset on bottom-left of each plot depicts the selected Ka (red) and Kb 
(green) peaks and the dotted red line represents the tilt axis. CBED simulations used for these data are done at 120 kV with a convergence 
angle of 1.5 mrad to replicate experimental conditions. 
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the nominal value (at 0°) to varying extent. This divergence 

is particularly large when adjacent peaks are used in presence 

of tilt along the armchair axis. In the summed case, the 

divergence reduces significantly for tilts along both 

directions. This allows us to overcome the effect of small 

unknown tilts (< 3°) and facilitates easy interpretation. 

The composite image obtained with the summed peaks is 

shown in Figure 6 (c) along with a virtual ADF image (b) 

reconstructed from the same dataset and a conventional high 

angle annular dark field (HAADF) STEM image (a) acquired 

in the same location prior to the 4D-STEM acquisition. Unlike 

the composite images shown in Figure 4 this composite image, 

made from a combination of all 6 vDF images, is much easier 

to interpret and does not have strange color variations within 

different bilayer islands. 

Figure 6 (d) shows line profiles from the vADF (red) and 

HAADF (blue) images while (e) shows a line profile from the 

same region from the Ka (red) and Kb (green) composite 

images. The Ka and Kb profiles have similar contours while 

the ratio between them varies depending on orientation and 

stacking order of the grains. From a comparison with the 

vADF and HAADF profiles, we can notice that most 

information about orientation and stacking is lost when 

radially averaging the intensity at a certain scattering angle. 

In more detail, HAADF image is formed mainly by elastically 

scattered electrons inducing that image contrast varies with 

Z2, only revealing the number of layers. In the vADF image, 

due to the presence of diffraction contrast at lower scattering 

angles KADF=Ka+Kb, differences between bilayer stacked 

2H (AA’) and 3R (AC/AB) can be discerned, however, 

differences between AB and AC along with information on 

grain orientation is lacking. This information is retained in the 

composite image formed using the 4D dataset which signifies 

the benefit of using the 4D-STEM technique over 

conventional (S)TEM imaging.  

The general trend in intensity ratios agrees well with the 

CBED simulations (Fig. 7a) and enables us to uniquely assign 

the stacking order (in bilayer) and orientation (in monolayer) 

as labelled in the profile plot of fig 6. While AC stacking has 

the largest asymmetry between red and green channels, the 

asymmetry is significantly smaller and inverted for AB (IKb > 

IKa). On the other hand, AA’ stacking has much higher 

intensity equal for both red and green channels. The 60° 

rotated domains in the monolayer are differentiated by the 

inversion of asymmetry between intensities. 

Although such a composite image resulting from a 

combination of 6 vDF images allows for easy interpretation 

based on color, it is laborious to manually segment the data 

and get estimates of their relative abundance, specially from 

large areas. Therefore, in order to further automatize the data 

analysis so that statistically relevant information can be 

retrieved, a clustering procedure based on an unsupervised 

learning algorithm is developed. Unsupervised learning is a 

type of machine learning algorithm which draws inferences 

Figure 6: (a) HAADF STEM image acquired in the same region prior to 4D-STEM acquisition. (b) Virtual ADF image and (c) composite 
virtual DF image reconstructed from the 512 x 512 4D dataset by summing 3 Ka and 3 Kb. (d) Line profiles comparing HAADF and ADF 
intensities. Note: HAADF is acquired much faster with lower dwell time and hence is noisier. (e) Profiles of the same region from the 
composite DF image. 
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from an unlabelled input dataset, often used to find hidden 

patterns and groups in exploratory data.  

The input provided to the VBGM model is a set of images 

extracted from the 4D dataset. These include two summed 

vDF images from the Ka and Kb diffraction spots, several 

mathematical operations between the two images (Table 2) 

and complementary vBF and vADF images extracted from 

the same dataset. These images are binned to 128 x 128 to 

reduce size for faster processing and normalized before 

inputting them into the model. The main parameter required 

by the model is the upper limit of the number of components 

(n) expected in the dataset which is set to 10. The algorithm 

then segments the data into the number of components based 

on correlation of features (pixel intensity in each image). The 

output is an array of labels provided for each pixel ranging 

from 0 to 9 (n − 1). The resulting labels are represented with 

different colors in the segmented image shown in Figure 7(b). 

The labels are then manually assigned classes and represented 

in the bar chart shown in Figure 7(c) where the color of the 

bars correspond to the segmented image. The upper limit on 

number of components is chosen as 10 because it is 

sufficiently higher than the minimum number of components 

required to fit the main classes of interest which include 3 for 

orientation in monolayer (0°, 60°and  rotated to intermediate 

angle) and 3 for stacking in bilayer (AA’, AB and AC). The 

remaining additional components are provided to differentiate 

the small regions with third layer islands. When a larger 

number of components are used, it results in splitting of the 

clusters into new components as the VBGM model tries to fit 

the data into as many components as are made available. 

These additional components are found predominantly at the 

interface between either ML and BL region or two differently 

stacked bilayer regions  (similar to “edges” component shown 

in Fig. 7(b,c)) and are not really separate classes but instead 

arise as a consequence of image binning resulting in averaged 

intensities of pixels at the interface between two components. 

These interface pixels are wrongly identified as additional 

components when number of components provided to the 

model is higher than 10.  This technique and the statistics 

obtained can be useful to evaluate growth processes which 

aim at the control of layer thickness, orientation and stacking 

of domains.  

4. Conclusion 

DF-TEM is shown to be a powerful technique to map the 

grain structure and stacking order by utilizing the asymmetry 

in diffraction spot intensity caused by the lack of in-plane 

inversion symmetry in ML and BL (AB/AC) MX2. 4D-STEM 

using a direct electron detector not only helps validate the 

understanding from DF-TEM imaging, but also exemplifies 

the influence of small experimental tilts on interpretation 

when using only 1 or 2 conventional DF-TEM images. A 

simple yet effective way to overcome this issue is proposed 

wherein the contribution from the 3 Ka spots is summed and 

overlaid with the summed contribution from 3 Kb spots. A 

procedure is established that allows automatic segmentation 

of the data into n components and manually classified to 

obtain useful statistics about orientation and stacking. The 

combination of all the methods mentioned above provides 

crucial insights to the growers who aim to understand and 

tune their growth processes. 
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Table 2: List of mathematical operations used to form the input 
for the clustering model 

Category Mathematical operation 

Sum of vDF images 
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Difference 
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Quotient 
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Polarity 
(Ka1 

(Ka2 

- Kb1)/(Ka1 

- Kb2)/(Ka2 
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+ Kb2) 

 (Ka3 - Kb3)/(Ka3 + Kb3) 

 

Figure 7: (a) Comparison of polarity between CBED simulations and experimental 4D-STEM data for MoS2. (b) Segmented output from 
VBGM modelling. (c) Bar chart showing the abundance of various components found in the segmented image. 
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