|
Record |
Links |
|
Author |
Mehta, A.N.; Gauquelin, N.; Nord, M.; Orekhov, A.; Bender, H.; Cerbu, D.; Verbeeck, J.; Vandervorst, W. |
|
|
Title |
Unravelling stacking order in epitaxial bilayer MX₂ using 4D-STEM with unsupervised learning |
Type |
A1 Journal article |
|
Year |
2020 |
Publication |
Nanotechnology |
Abbreviated Journal |
Nanotechnology |
|
|
Volume |
31 |
Issue |
44 |
Pages |
445702 |
|
|
Keywords |
A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT) |
|
|
Abstract |
Following an extensive investigation of various monolayer transition metal dichalcogenides (MX2), research interest has expanded to include multilayer systems. In bilayer MX2, the stacking order strongly impacts the local band structure as it dictates the local confinement and symmetry. Determination of stacking order in multilayer MX(2)domains usually relies on prior knowledge of in-plane orientations of constituent layers. This is only feasible in case of growth resulting in well-defined triangular domains and not useful in-case of closed layers with hexagonal or irregularly shaped islands. Stacking order can be discerned in the reciprocal space by measuring changes in diffraction peak intensities. Advances in detector technology allow fast acquisition of high-quality four-dimensional datasets which can later be processed to extract useful information such as thickness, orientation, twist and strain. Here, we use 4D scanning transmission electron microscopy combined with multislice diffraction simulations to unravel stacking order in epitaxially grown bilayer MoS2. Machine learning based data segmentation is employed to obtain useful statistics on grain orientation of monolayer and stacking in bilayer MoS2. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000561424400001 |
Publication Date |
2020-07-14 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0957-4484 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
3.5 |
Times cited |
13 |
Open Access |
OpenAccess |
|
|
Notes |
; J.V. acknowledges funding from FLAG-ERA JTC2017 project 'Graph-Eye'. N.G. acknowledges funding from GOA project 'Solarpaint' of the University of Antwerp. This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 823717-ESTEEM3. 4D STEM data was acquired on a hybrid pixel detector funded with a Hercules fund 'Direct electron detector for soft matter TEM' from the Flemish Government. M. N. acknowledges funding from a Marie Curie Fellowship agreement No 838001. We thank Dr Jiongjiong Mo and Dr Benjamin Groven for developing the CVD-MoS<INF>2</INF> growth on sapphire and providing the material used in this article. ; |
Approved |
Most recent IF: 3.5; 2020 IF: 3.44 |
|
|
Call Number |
UA @ admin @ c:irua:171119 |
Serial |
6649 |
|
Permanent link to this record |