|
Record |
Links |
|
Author |
Prabhakara, V.; Jannis, D.; Guzzinati, G.; Béché, A.; Bender, H.; Verbeeck, J. |
|
|
Title |
HAADF-STEM block-scanning strategy for local measurement of strain at the nanoscale |
Type |
A1 Journal article |
|
Year |
2020 |
Publication |
Ultramicroscopy |
Abbreviated Journal |
Ultramicroscopy |
|
|
Volume |
219 |
Issue |
|
Pages |
113099 |
|
|
Keywords |
A1 Journal article; Electron microscopy for materials research (EMAT) |
|
|
Abstract |
Lattice strain measurement of nanoscale semiconductor devices is crucial for the semiconductor industry as strain substantially improves the electrical performance of transistors. High resolution scanning transmission electron microscopy (HR-STEM) imaging is an excellent tool that provides spatial resolution at the atomic scale and strain information by applying Geometric Phase Analysis or image fitting procedures. However, HR-STEM images regularly suffer from scanning distortions and sample drift during image acquisition. In this paper, we propose a new scanning strategy that drastically reduces artefacts due to drift and scanning distortion, along with extending the field of view. It consists of the acquisition of a series of independent small subimages containing an atomic resolution image of the local lattice. All subimages are then analysed individually for strain by fitting a nonlinear model to the lattice images. The method allows flexible tuning of spatial resolution and the field of view within the limits of the dynamic range of the scan engine while maintaining atomic resolution sampling within the subimages. The obtained experimental strain maps are quantitatively benchmarked against the Bessel diffraction technique. We demonstrate that the proposed scanning strategy approaches the performance of the diffraction technique while having the advantage that it does not require specialized diffraction cameras. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000594768500006 |
Publication Date |
2020-09-01 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0304-3991 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
2.2 |
Times cited |
4 |
Open Access |
OpenAccess |
|
|
Notes |
A.B. D.J. and J.V. acknowledge funding through FWO project G093417N ('Compressed sensing enabling low dose imaging in transmission electron microscopy') from the Flanders Research Fund. J.V acknowledges funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 823717 – ESTEEM3. The Qu-Ant-EM microscope and the direct electron detector used in the diffraction experiments was partly funded by the Hercules fund from the Flemish Government. This project has received funding from the GOA project “Solarpaint” of the University of Antwerp. GG acknowledges support from a postdoctoral fellowship grant from the Fonds Wetenschappelijk Onderzoek – Vlaanderen (FWO). Special thanks to Dr. Thomas Nuytten, Prof. Dr. Wilfried Vandervorst, Dr. Paola Favia, Dr. Olivier Richard from IMEC, Leuven and Prof. Dr. Sara Bals from EMAT, Antwerp for their continuous support and collaboration with the project and to the IMEC processing group for the device fabrication. |
Approved |
Most recent IF: 2.2; 2020 IF: 2.843 |
|
|
Call Number |
EMAT @ emat @c:irua:172485 |
Serial |
6404 |
|
Permanent link to this record |