toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Kelly, S.; Mercer, E.; Gorbanev, Y.; Fedirchyk, I.; Verheyen, C.; Werner, K.; Pullumbi, P.; Cowley, A.; Bogaerts, A. url  doi
openurl 
  Title Plasma-based conversion of martian atmosphere into life-sustaining chemicals: The benefits of utilizing martian ambient pressure Type A1 Journal Article
  Year 2024 Publication Journal of CO2 Utilization Abbreviated Journal Journal of CO2 Utilization  
  Volume 80 Issue Pages (down) 102668  
  Keywords A1 Journal Article; Mars Microwave plasma Conversion; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract We explored the potential of plasma-based In-Situ Resource Utilization (ISRU) for Mars through the conversion of Martian atmosphere (~96% CO2, 2% N2, and 2% Ar) into life-sustaining chemicals. As the Martian surface pressure is about 1% of the Earth’s surface pressure, it is an ideal environment for plasma-based gas conversion using microwave reactors. At 1000 W and 10 Ln/min (normal liters per minute), we produced ~76 g/h of O2 and ~3 g/h of NOx using a 2.45 GHz waveguided reactor at 25 mbar, which is ~3.5 times Mars ambient pressure. The energy cost required to produce O2 was ~0.013 kWh/g, which is very promising compared to recently concluded MOXIE experiments on the Mars surface. This marks a crucial step towards realizing the extension of human exploration.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2024-01-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2212-9820 ISBN Additional Links UA library record  
  Impact Factor 7.7 Times cited Open Access  
  Notes We acknowledge financial support by a European Space Agency (ESA) Open Science Innovation Platform study (contract no. 4000137001/21/NL/GLC/ov), the European Marie Skłodowska-Curie Individual Fellowship ‘‘PENFIX’’ within Horizon 2020 (grant no. 838181), the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Program (grant no. 810182; SCOPE ERC Synergy project), the Excellence of Science FWOFNRS PLASyntH2 project (FWO grant no. G0I1822N and EOS no. 4000751) and the Methusalem project of the University of Antwerp. Approved Most recent IF: 7.7; 2024 IF: 4.292  
  Call Number PLASMANT @ plasmant @c:irua:202389 Serial 8986  
Permanent link to this record
 

 
Author Cui, Z.; Hao, Y.; Jafarzadeh, A.; Li, S.; Bogaerts, A.; Li, L. pdf  url
doi  openurl
  Title The adsorption and decomposition of SF6 over defective and hydroxylated MgO surfaces: A DFT study Type A1 Journal article
  Year 2023 Publication Surfaces and interfaces Abbreviated Journal  
  Volume 36 Issue Pages (down) 102602  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma degradation is one of the most effective methods for the abatement of greenhouse gas sulfur hexafluoride

(SF6). To evaluate the potential of MgO as a catalyst in plasma degradation, we investigate the catalytic properties

of MgO on SF6 adsorption and activation by density functional theory (DFT) where the O-defective and

hydroxylated surfaces are considered as two typical plasma-generated surfaces. Our results show that perfect

MgO (001) and (111) surfaces cannot interact with SF6 and only physical adsorption happens. In case of Odefective

MgO surfaces, the O vacancy is the most stable adsorption site. SF6 undergoes a decomposition to SF5

and F over the O-defective MgO (001) surface and undergoes an elongation of the bottom S-F bond over the Odefective

(111) surface. Besides, SF6 shows a physically adsorption at the stepsite of the MgO (001) surface,

accompanied by small changes in its bond angle and length. Furthermore, SF6 is found to be physically and

chemically adsorbed over 0.5 and 1.0 ML (monolayer) H-covered O-terminated MgO (111) surfaces, respectively.

The SF6 molecule undergoes a self-decomposition on the 1.0 ML hydroxylated surface via a surface bonding

process. This study shows that defective and hydroxylated MgO surfaces have the surface capacities for SF6

activation, which shows that MgO has potential as packing material in SF6 waste treatment in packed-bed

plasmas.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000916285000001 Publication Date 2022-12-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2468-0230 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.2 Times cited Open Access OpenAccess  
  Notes National Natural Science Foundation of China, 52207155 ; Fonds Wetenschappelijk Onderzoek; Vlaams Supercomputer Centrum; Vlaamse regering; Approved Most recent IF: 6.2; 2023 IF: NA  
  Call Number PLASMANT @ plasmant @c:irua:194364 Serial 7244  
Permanent link to this record
 

 
Author Kelly, S.; Mercer, E.; De Meyer, R.; Ciocarlan, R.-G.; Bals, S.; Bogaerts, A. url  doi
openurl 
  Title Microwave plasma-based dry reforming of methane: Reaction performance and carbon formation Type A1 Journal Article
  Year 2023 Publication Journal of CO2 utilization Abbreviated Journal Journal of CO2 Utilization  
  Volume 75 Issue Pages (down) 102564  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract e investigate atmospheric pressure microwave (MW) plasma (2.45 GHz) conversion in CO2 and CH4 mixtures (i.e., dry reforming of methane, DRM) focusing on reaction performance and carbon formation. Promising energy costs of ~2.8–3.0 eV/molecule or ~11.1–11.9 kJ/L are amongst the best performance to date considering the current state-of-the-art for plasma-based DRM for all types of plasma. The conversion is in the range of ~46–49% and ~55–67% for CO2 and CH4, respectively, producing primarily syngas (i.e., H2 and CO) with H2/CO ratios of ~0.6–1 at CH4 fractions ranging from 30% to 45%. Water is the largest byproduct with levels ranging ~7–14% in the exhaust. Carbon particles visibly impact the plasma at higher CH4 fractions (> 30%), where they become heated and incandescent. Particle luminosity increases with increasing CH4 fractions, with the plasma becoming unstable near a 1:1 mixture (i.e., > 45% CH4). Electron microscopy of the carbon material reveals an agglomerated morphology of pure carbon nanoparticles. The mean particle size is determined as ~20 nm, free of any metal contamination, consistent with the electrode-less MW design.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001065310000001 Publication Date 2023-08-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2212-9820 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.7 Times cited 6 Open Access OpenAccess  
  Notes We acknowledge financial support by a European Space Agency (ESA) Open Science Innovation Platform study (contract no. 4000137001/21/NL/GLC/ov), the European Marie Skłodowska-Curie Individual Fellowship ‘‘PENFIX’’ within Horizon 2020 (grant no. 838181), the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Program (grant no. 810182; SCOPE ERC Synergy project), the Excellence of Science FWOFNRS PLASyntH2 project (FWO grant no. G0I1822N and EOS no. 4000751) and the Methusalem project of the University of Antwerp Approved Most recent IF: 7.7; 2023 IF: 4.292  
  Call Number PLASMANT @ plasmant @c:irua:198155 Serial 8807  
Permanent link to this record
 

 
Author Vertongen, R.; Bogaerts, A. url  doi
openurl 
  Title How important is reactor design for CO2 conversion in warm plasmas? Type A1 Journal Article
  Year 2023 Publication Journal of CO2 Utilization Abbreviated Journal  
  Volume 72 Issue Pages (down) 102510  
  Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract In this work, we evaluated several new electrode configurations for CO2 conversion in a gliding arc plasmatron

(GAP) reactor. Although the reactor design influences the performance, the best results give only slightly higher

CO2 conversion than the basic GAP reactor design, which indicates that this reactor may have reached its performance

limits. Moreover, we compared our results to those of four completely different plasma reactors, also

operating at atmospheric pressure and with contact between the plasma and the electrodes. Surprisingly, the

performance of all these warm plasmas is very similar (CO2 conversion around 10 % for an energy efficiency

around 30 %). In view of these apparent performance limits regarding the reactor design, we believe further

improvements should focus on other aspects, such as the post-plasma-region where the implementation of

nozzles or a carbon bed are promising. We summarize the performance of our GAP reactor by comparing the

energy efficiency and CO2 conversion for all different plasma reactors reported in literature. We can conclude

that the GAP is not the best plasma reactor, but its operation at atmospheric pressure makes it appealing for

industrial application. We believe that future efforts should focus on process design, techno-economic assessments

and large-scale demonstrations: these will be crucial to assess the real industrial potential of this warm

plasma technology
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001024970900001 Publication Date 2023-06-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2212-9820 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.7 Times cited Open Access Not_Open_Access  
  Notes We acknowledge financial support from the Fund for Scientific Research (FWO) Flanders (Grant ID 110221N) and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreements No 810182 – SCOPE ERC Synergy project and No. 101081162 — “PREPARE” ERC Proof of Concept project). We also thank I. Tsonev, P. Heirman, F. Girard-Sahun and G. Trenchev for the interesting discussions and practical help with the experiments, as well as J. Creel for his ideas on the inserted anode designs. Approved Most recent IF: 7.7; 2023 IF: 4.292  
  Call Number PLASMANT @ plasmant @c:irua:197044 Serial 8799  
Permanent link to this record
 

 
Author Oliveira, M.C.; Verswyvel, H.; Smits, E.; Cordeiro, R.M.; Bogaerts, A.; Lin, A. url  doi
openurl 
  Title The pro- and anti-tumoral properties of gap junctions in cancer and their role in therapeutic strategies Type A1 Journal article
  Year 2022 Publication Redox Biology Abbreviated Journal Redox Biol  
  Volume 57 Issue Pages (down) 102503  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Center for Oncological Research (CORE)  
  Abstract Gap junctions (GJs), essential structures for cell-cell communication, are made of two hemichannels (commonly called connexons), one on each adjacent cell. Found in almost all cells, GJs play a pivotal role in many physi­ological and cellular processes, and have even been linked to the progression of diseases, such as cancer. Modulation of GJs is under investigation as a therapeutic strategy to kill tumor cells. Furthermore, GJs have also been studied for their key role in activating anti-cancer immunity and propagating radiation- and oxidative stress-induced cell death to neighboring cells, a process known as the bystander effect. While, gap junction (GJ)based therapeutic strategies are being developed, one major challenge has been the paradoxical role of GJs in both tumor progression and suppression, based on GJ composition, cancer factors, and tumoral context. Therefore, understanding the mechanisms of action, regulation, and the dual characteristics of GJs in cancer is critical for developing effective therapeutics. In this review, we provide an overview of the current under­ standing of GJs structure, function, and paradoxical pro- and anti-tumoral role in cancer. We also discuss the treatment strategies to target these GJs properties for anti-cancer responses, via modulation of GJ function.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000871090800004 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2213-2317 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 11.4 Times cited Open Access OpenAccess  
  Notes We thank Coordination of Superior Level Staff Improvement (CAPES, Brazil) for the scholarship granted, and the Turing HPC infrastructure at the CalcUA core facility of the University of Antwerp, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Founda­tion, the Flemish Government (department EWI) and the University of Antwerp, for providing the computational resources needed for running the simulations. This work was also funded in part by the funded by the Research Foundation – Flanders (FWO) and the Flemish Government. The FWO fellowships and grants that funded this work include: 12S9221N (Abraham Lin), G044420N (Abraham Lin and Annemie Bogaerts), and 1S67621N (Hanne Verswyvel). Figs. 1, 4 and 5 were created in BioRender.com. Approved Most recent IF: 11.4  
  Call Number PLASMANT @ plasmant @c:irua:191362 Serial 7112  
Permanent link to this record
 

 
Author De Backer, J.; Lin, A.; Berghe, W.V.; Bogaerts, A.; Hoogewijs, D. url  doi
openurl 
  Title Cytoglobin inhibits non-thermal plasma-induced apoptosis in melanoma cells through regulation of the NRF2-mediated antioxidant response Type A1 Journal article
  Year 2022 Publication Redox Biology Abbreviated Journal Redox Biol  
  Volume 55 Issue Pages (down) 102399  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Proteinscience, proteomics and epigenetic signaling (PPES)  
  Abstract Melanoma arises from pigment-producing cells called melanocytes located in the basal layers of the epidermis of the skin. Cytoglobin (CYGB) is a ubiquitously expressed hexacoordinated globin that is highly enriched in me­lanocytes and frequently downregulated during melanomagenesis. Previously, we showed that non-thermal plasma (NTP)-produced reactive oxygen and nitrogen species (RONS) lead to the formation of an intra­ molecular disulfide bridge that would allow CYGB to function as a redox-sensitive protein. Here, we investigate the cytotoxic effect of indirect NTP treatment in two melanoma cell lines with divergent endogenous CYGB expression levels, and we explore the role of CYGB in determining treatment outcome. Our findings are consistent with previous studies supporting that NTP cytotoxicity is mediated through the production of RONS and leads to apoptotic cell death in melanoma cells. Furthermore, we show that NTP-treated solutions elicit an antioxidant response through the activation of nuclear factor erythroid 2–related factor 2 (NRF2). The knock­ down and overexpression of CYGB respectively sensitizes and protects melanoma cells from RONS-induced apoptotic cell death. The presence of CYGB enhances heme-oxygenase 1 (HO-1) and NRF2 protein expression levels, whereas the absence impairs their expression. Moreover, analysis of the CYGB-dependent transcriptome demonstrates the tumor suppressor long non-coding RNA maternally expressed 3 (MEG3) as a hitherto unde­ scribed link between CYGB and NRF2. Thus, the presence of CYGB, at least in melanoma cells, seems to play a central role in determining the therapeutic outcome of RONS-inducing anticancer therapies, like NTP-treated solutions, possessing both tumor-suppressive and oncogenic features. Hence, CYGB expression could be of in­ terest either as a biomarker or as a candidate for future targeted therapies in melanoma.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000844595100002 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2213-2317 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.4 Times cited Open Access OpenAccess  
  Notes This work was funded in part by the Research Foundation – Flanders (FWO) and the Flemish Government. The FWO fellowships and grants that funded this work include: 12S9221 N (Abraham Lin) and G044420 N (Abraham Lin and Annemie Bogaerts). Joey De Backer acknowledges a visiting fellowship from the University of Fribourg. David Hoogewijs acknowledges support by the Swiss National Science Foundation (grants 31003A173000 and 310030207460). Approved Most recent IF: 11.4  
  Call Number PLASMANT @ plasmant @c:irua:190635 Serial 7101  
Permanent link to this record
 

 
Author Verheyen, C.; van ’t Veer, K.; Snyders, R.; Bogaerts, A. url  doi
openurl 
  Title Atomic oxygen assisted CO2 conversion: A theoretical analysis Type A1 Journal article
  Year 2023 Publication Journal of CO2 utilization Abbreviated Journal  
  Volume 67 Issue Pages (down) 102347  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract With climate change still a pressing issue, there is a great need for carbon capture, utilisation and storage (CCUS)

methods. We propose a novel concept where CO2 conversion is accomplished by O2 splitting followed by the

addition of O atoms to CO2. The latter is studied here by means of kinetic modelling. In the first instance, we

study various CO2/O ratios, and we observe an optimal CO2 conversion of around 30–40% for 50% O addition.

Gas temperature also has a large influence, with a minimum temperature of around 1000 K to a maximum of

2000 K for optimal conversion. In the second instance, we study various CO2/O/O2 ratios, due to O2 being a

starting gas. Also here we define optimal regions for CO2 conversion, which reach maximum conversion for a

CO2 fraction of 50% and an O/O2 ratio bigger than 1. Those can be expanded by heating on one hand, for low

atomic oxygen availability, and by quenching after reaction on the other hand, for cases where the temperatures

are too high. Our model predictions can serve as a guideline for experimental research in this domain.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000908384000005 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2212-9820 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.7 Times cited Open Access OpenAccess  
  Notes This research was supported by FWO – PhD fellowship-aspirant, Grant 1184820N. We also want to thank Bj¨orn Loenders and Joachim Slaets. Approved Most recent IF: 7.7; 2023 IF: 4.292  
  Call Number PLASMANT @ plasmant @c:irua:192321 Serial 7231  
Permanent link to this record
 

 
Author Ivanov, V.; Paunska, T.; Lazarova, S.; Bogaerts, A.; Kolev, S. pdf  url
doi  openurl
  Title Gliding arc/glow discharge for CO2 conversion: Comparing the performance of different discharge configurations Type A1 Journal Article;CO2 conversion
  Year 2023 Publication Journal of CO2 Utilization Abbreviated Journal  
  Volume 67 Issue Pages (down) 102300  
  Keywords A1 Journal Article;CO2 conversion; CO2 dissociation; Low current gliding arc; Magnetic stabilization; Magnetically stabilized discharge; Gliding glow discharge; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract We studied the use of low current (hundreds of milliamperes) gliding arc/glow discharges for CO2 dissociation, at atmospheric pressure, in three different configurations. All of these are based on the gliding arc design with flat diverging electrodes. The discharge is mainly in the normal glow regime with contracted positive column. The CO2 gas is injected from a nozzle, at the closest separation between the electrodes. A pair of quartz glasses is placed on both sides of the electrodes, so that the gas flow is restricted to the active plasma area, between the electrodes. For two of the tested configurations, an external magnetic field was applied, to create a magnetic force, both in the direction of the gas flow, and opposite to the gas flow. In the first case, the arc is accelerated, shortening the period between ignition and extinction, while in the second case, it is stabilized (magneticallystabilized). We studied two quantities, namely the CO2 conversion and the energy efficiency of the conversion. Generally, the CO2 conversion decreases with increasing flow rate and increases with power. The energy effi­ciency increases with the flow rate, for all configurations. The magnetically-stabilized configuration is more stable and efficient at low gas flow rates, but has poor performance at high flow rates, while the non-stabilized configurations exhibit good conversion for a larger range of flow rates, but they are generally more unstable and less efficient.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000891249700001 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2212-9820 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.7 Times cited Open Access Not_Open_Access  
  Notes This work was supported by the Bulgarian National Science Fund, Ministry of Education and Science, research grant KP-06-OPR 04/4 from 14.12.2018 and by the European Regional Development Fund within the Operational Programme “Science and Education for Smart Growth 2014 – 2020″ under the Project CoE “National center of mechatronics and clean technologies” BG05M2OP001-1.001-0008. Approved Most recent IF: 7.7; 2023 IF: 4.292  
  Call Number PLASMANT @ plasmant @c:irua:191816 Serial 7117  
Permanent link to this record
 

 
Author Vertongen, R.; Trenchev, G.; Van Loenhout, R.; Bogaerts, A. pdf  url
doi  openurl
  Title Enhancing CO2 conversion with plasma reactors in series and O2 removal Type A1 Journal article
  Year 2022 Publication Journal Of Co2 Utilization Abbreviated Journal J Co2 Util  
  Volume 66 Issue Pages (down) 102252  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this work, we take a crucial step towards the industrial readiness of plasma-based CO2 conversion. We present a stepwise method to study plasma reactors in series as a first approach to a recycle flow. By means of this procedure, the CO2 conversion is enhanced by a factor of 3, demonstrating that a single-pass plasma treatment performs far below the optimal capacity of the reactor. Furthermore, we explore the effect of O2 in the mixture with our flexible procedure. Addition of O2 in the mixture has a clear detrimental effect on the conversion, in agreement with other experiments in atmospheric pressure plasmas. O2 removal is however highly beneficial, demonstrating a conversion per pass that is 1.6 times higher than the standard procedure. Indeed, extracting one of the products prevents recombination reactions. Based on these insights, we discuss opportunities for further improvements, especially in the field of specialised separation techniques.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000872550900003 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2212-9820 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.7 Times cited Open Access OpenAccess  
  Notes We acknowledge financial support from the Fund for Scientific Research (FWO) Flanders (Grant ID 110221 N), the Flemish Agency for Innovation and Entrepreneurship (VLAIO) (Grant ID HBC.2021.0251), and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 810182 – SCOPE ERC Synergy project). We also thank L. Hollevoet, K. Rouwenhorst, F. Girard-Sahun, B. Wanten and I. Tsonev for the inter­esting discussions and practical help with the experiments. Approved Most recent IF: 7.7  
  Call Number PLASMANT @ plasmant @c:irua:191467 Serial 7111  
Permanent link to this record
 

 
Author Li, S.; Liu, C.; Bogaerts, A.; Gallucci, F. url  doi
openurl 
  Title Editorial: Special issue on CO2 utilization with plasma technology Type Editorial
  Year 2022 Publication Journal Of Co2 Utilization Abbreviated Journal J Co2 Util  
  Volume 61 Issue Pages (down) 102017  
  Keywords Editorial; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma technology has advanced significantly in recent years, with application ranging from chemical conversion, to surface treatment, material development and several other fields. Special attention has been paid to the development of possible novel approaches for the conversion of chemicals in a more sustainable way. Plasma technology offers advantages over thermochemical routes such as high process versatility, mild reaction condition, one-step synthesis, fast reaction and instant control. More importantly, it can be easily combined with elec­tricity generated from various renewable sources and is suitable for energy storage via the conversion of intermittent renewable energy into carbon-neutral fuels or other chemicals. In recent years, there has been a growing interest in the development of plasma technology for CO2 uti­lization. Investigation on different reactions such as CO2 splitting, dry reforming of methane (DRM) and CO2 hydrogenation with different types of plasma reactors and catalysts have been reported by researchers worldwide. Although technological maturity still needs to be increased, the potential of plasma has been well-recognized by the scientific community and industry. More research output in the future is expected as a result of intensive research activities and various kinds of invest­ment. In this context, we present this special issue on CO2 utilization with plasma technology, which collects 22 articles, covering topics in related areas such as plasma reactor design, plasma catalysis, plasmamaterial interaction, modeling and new ideas for possible applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000798071200005 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2212-9820 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 7.7 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 7.7  
  Call Number PLASMANT @ plasmant @c:irua:188287 Serial 7058  
Permanent link to this record
 

 
Author Yusupov, M.; Privat-Maldonado, A.; Cordeiro, R.M.; Verswyvel, H.; Shaw, P.; Razzokov, J.; Smits, E.; Bogaerts, A. url  doi
openurl 
  Title Oxidative damage to hyaluronan–CD44 interactions as an underlying mechanism of action of oxidative stress-inducing cancer therapy Type A1 Journal article
  Year 2021 Publication Redox Biology Abbreviated Journal Redox Biol  
  Volume 43 Issue Pages (down) 101968  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Center for Oncological Research (CORE)  
  Abstract Multiple cancer therapies nowadays rely on oxidative stress to damage cancer cells. Here we investigated the biological and molecular effect of oxidative stress on the interaction between CD44 and hyaluronan (HA), as interrupting their binding can hinder cancer progression. Our experiments demonstrated that the oxidation of HA decreased its recognition by CD44, which was further enhanced when both CD44 and HA were oxidized. The reduction of CD44–HA binding negatively affected the proliferative state of cancer cells. Our multi-level atomistic simulations revealed that the binding free energy of HA to CD44 decreased upon oxidation. The effect of HA and CD44 oxidation on CD44–HA binding was similar, but when both HA and CD44 were oxidized, the effect was much larger, in agreement with our experiments. Hence, our experiments and computations support our hypothesis on the role of oxidation in the disturbance of CD44–HA interaction, which can lead to the inhibition of proliferative signaling pathways inside the tumor cell to induce cell death.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000657371800005 Publication Date 2021-04-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2213-2317 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.337 Times cited Open Access OpenAccess  
  Notes Fwo; The authors acknowledge the Turing HPC infrastructure at the CalcUA core facility of the University of Antwerp (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA, where all computational work was performed. Approved Most recent IF: 6.337  
  Call Number PLASMANT @ plasmant @c:irua:177780 Serial 6750  
Permanent link to this record
 

 
Author Wanten, B.; Maerivoet, S.; Vantomme, C.; Slaets, J.; Trenchev, G.; Bogaerts, A. pdf  url
doi  openurl
  Title Dry reforming of methane in an atmospheric pressure glow discharge: Confining the plasma to expand the performance Type A1 Journal article
  Year 2022 Publication Journal Of Co2 Utilization Abbreviated Journal J Co2 Util  
  Volume 56 Issue Pages (down) 101869  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We present a confined atmospheric pressure glow discharge plasma reactor, with very good performance towards dry reforming of methane, i.e., CO2 and CH4 conversion of 64 % and 94 %, respectively, at an energy cost of 3.5–4 eV/molecule (or 14–16 kJ/L). This excellent performance is among the best reported up to now for all types of plasma reactors in literature, and is due to the confinement of the plasma, which maximizes the fraction of gas passing through the active plasma region. The main product formed is syngas, with H2O and C2H2 as byproducts. We developed a quasi-1D chemical kinetics model, showing good agreement with the experimental results, which provides a thorough insight in the reaction pathways underlying the conversion of CO2 and CH4 and the formation of the different products.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000740230000002 Publication Date 2021-12-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2212-9820 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.7 Times cited Open Access OpenAccess  
  Notes Vlaamse regering; European Research Council, 810182 ; Herculesstichting; European Research Council; Horizon 2020 Framework Programme; Universiteit Antwerpen; This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 810182 – SCOPE ERC Synergy project), and through long-term structural funding (Methusalem). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (depart­ment EWI) and the UAntwerpen. Finally, we thank T. Kenis, J. Van den Hoek, and T. Breugelmans from the University of Antwerp, for per­ forming the liquid analysis. Approved Most recent IF: 7.7  
  Call Number PLASMANT @ plasmant @c:irua:185163 Serial 6899  
Permanent link to this record
 

 
Author Van Alphen, S.; Slaets, J.; Ceulemans, S.; Aghaei, M.; Snyders, R.; Bogaerts, A. pdf  url
doi  openurl
  Title Effect of N2 on CO2-CH4 conversion in a gliding arc plasmatron: Can this major component in industrial emissions improve the energy efficiency? Type A1 Journal Article;Plasma-based CO2-CH4 conversion
  Year 2021 Publication Journal Of Co2 Utilization Abbreviated Journal J Co2 Util  
  Volume 54 Issue Pages (down) 101767  
  Keywords A1 Journal Article;Plasma-based CO2-CH4 conversion; Effect of N2; Plasma chemistry; Computational modelling; Gliding arc plasmatron; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract Plasma-based CO2 and CH4 conversion is gaining increasing interest, and a great portion of research is dedicated to adapting the process to actual industrial conditions. In an industrial context, the process needs to be able to process N2 admixtures, since most industrial gas emissions contain significant amounts of N2, and gas separations are financially costly. In this paper we therefore investigate the effect of N2 on the CO2 and CH4 conversion in a gliding arc plasmatron reactor. The addition of 20 % N2 reduces the energy cost of the conversion process by 21 % compared to a pure CO2/CH4 mixture, from 2.9 down to 2.2 eV/molec (or from 11.5 to 8.7 kJ/L), yielding a CO2 and CH4 (absolute) conversion of 28.6 and 35.9 % and an energy efficiency of 58 %. These results are among the best reported in literature for plasma-based DRM, demonstrating the benefits of N2 present in the mix. Compared to DRM results in different plasma reactor types, a low energy cost was achieved. To understand the underlying mechanisms of N2 addition, we developed a combination of four different computational models, which reveal that the beneficial effect of N2 addition is attributed to (i) a rise in the electron density (increasing the plasma conductivity, and therefore reducing the plasma power needed to sustain the plasma, which reduces the energy cost), as well as (ii) a rise in the gas temperature, which accelerates the CO2 and CH4 conversion reactions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000715057300005 Publication Date 2021-10-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2212-9820 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.292 Times cited Open Access OpenAccess  
  Notes This research was supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innova­ tion programme (grant agreement No 810182 – SCOPE ERC Synergy project), the Excellence of Science FWO-FNRS project (FWO grant ID GoF9618n, EOS ID 30505023), and through long-term structural fund­ing (Methusalem). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Ant­werpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. Approved Most recent IF: 4.292  
  Call Number PLASMANT @ plasmant @c:irua:184044 Serial 6827  
Permanent link to this record
 

 
Author Kaliyappan, P.; Paulus, A.; D’Haen, J.; Samyn, P.; Uytdenhouwen, Y.; Hafezkhiabani, N.; Bogaerts, A.; Meynen, V.; Elen, K.; Hardy, A.; Van Bael, M.K. pdf  url
doi  openurl
  Title Probing the impact of material properties of core-shell SiO₂@TiO₂ spheres on the plasma-catalytic CO₂ dissociation using a packed bed DBD plasma reactor Type A1 Journal article
  Year 2021 Publication Journal Of Co2 Utilization Abbreviated Journal J Co2 Util  
  Volume 46 Issue Pages (down) 101468  
  Keywords A1 Journal article; Engineering sciences. Technology; Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma catalysis, a promising technology for conversion of CO2 into value-added chemicals near room temperature, is gaining increasing interest. A dielectric barrier discharge (DBD) plasma has attracted attention due to its simple design and operation at near ambient conditions, ease to implement catalysts in the plasma zone and upscaling ability to industrial applications. To improve its main drawbacks, being relatively low conversion and energy efficiency, a packing material is used in the plasma discharge zone of the reactor, sometimes decorated by a catalytic material. Nevertheless, the extent to which different properties of the packing material influence plasma performance is still largely unexplored and unknown. In this study, the particular effect of synthesis induced differences in the morphology of a TiO2 shell covering a SiO2 core packing material on the plasma conversion of CO2 is studied. TiO2 has been successfully deposited around 1.6–1.8 mm sized SiO2 spheres by means of spray coating, starting from aqueous citratoperoxotitanate(IV) precursors. Parameters such as concentration of the Ti(IV) precursor solutions and addition of a binder were found to affect the shells’ properties and surface morphology and to have a major impact on the CO2 conversion in a packed bed DBD plasma reactor. Core-shell SiO2@TiO2 obtained from 0.25 M citratoperoxotitante(IV) precursors with the addition of a LUDOX binder showed the highest CO2 conversion 37.7% (at a space time of 70 s corresponding to an energy efficiency of 2%) and the highest energy efficiency of 4.8% (at a space time of 2.5 s corresponding to a conversion of 3%).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000634280300004 Publication Date 2021-02-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2212-9820 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.292 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.292  
  Call Number UA @ admin @ c:irua:175958 Serial 6773  
Permanent link to this record
 

 
Author Dinh, D.K.; Trenchev, G.; Lee, D.H.; Bogaerts, A. pdf  url
doi  openurl
  Title Arc plasma reactor modification for enhancing performance of dry reforming of methane Type A1 Journal article
  Year 2020 Publication Journal Of Co2 Utilization Abbreviated Journal J Co2 Util  
  Volume 42 Issue Pages (down) 101352  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Arc plasma technology is gaining increasing interest for a variety of chemical reaction applications. In this study, we demonstrate how modifying the reactor geometry can significantly enhance the chemical reaction perfor­mance. Using dry reforming of methane as a model reaction, we studied different rotating arc reactors (con­ventional rotating arc reactor and nozzle-type rotating arc reactor) to evaluate the effect of attaching a downstream nozzle. The nozzle structure focuses the heat to a confined reaction volume, resulting in enhanced heat transfer from the arc into gas activation and reduced heat losses to the reactor walls. Compared to the conventional rotating arc reactor, this yields much higher CH4 and CO2 conversion (i.e., 74% and 49%, respectively, versus 40% and 28% in the conventional reactor, at 5 kJ/L) as well as energy efficiency (i.e., 53% versus 36%). The different performance in both reactors was explained by both experiments (measurements of temperature and oscillogram of current and voltage) and numerical modelling of the gas flow dynamics, heat transfer and fluid plasma of the reactor chambers. The results provide important insights for design optimization of arc plasma reactors for various chemical reactions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000599717000009 Publication Date 2020-11-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2212-9820 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.7 Times cited Open Access  
  Notes Korea Institute of Machinery and Materials, NK225F and NG0340) ; This work is supported by the Institutional research program (NK225F and NG0340) of the Korea Institute of Machinery and Materials. Approved Most recent IF: 7.7; 2020 IF: 4.292  
  Call Number PLASMANT @ plasmant @c:irua:173859 Serial 6431  
Permanent link to this record
 

 
Author Trenchev, G.; Bogaerts, A. pdf  url
doi  openurl
  Title Dual-vortex plasmatron: A novel plasma source for CO2 conversion Type A1 Journal article
  Year 2020 Publication Journal Of Co2 Utilization Abbreviated Journal J Co2 Util  
  Volume 39 Issue Pages (down) 101152  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Atmospheric pressure gliding arc (GA) discharges are gaining increasing interest for CO2 conversion and other gas conversion applications, due to their simplicity and high energy efficiency. However, they are characterized by some drawbacks, such as non-uniform gas treatment, limiting the conversion, as well as the development of a hot cathode spot, resulting in severe electrode degradation. In this work, we built a dual-vortex plasmatron, which is a GA plasma reactor with innovative electrode configuration, to solve the above problems. The design aims to improve the CO2 conversion capability of the GA reactor by elongating the arc in two directions, to increase the residence time of the gas inside the arc, and to actively cool the cathode spot by rotation of the arc and gas convection. The measured CO2 conversion and corresponding energy efficiency indeed look very promising. In addition, we developed a fluid dynamics non-thermal plasma model with argon chemistry, to study the arc behavior in the reactor and to explain the experimental results.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000546648400008 Publication Date 2020-03-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2212-9820 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.7 Times cited Open Access  
  Notes Fund for Scientific Research – Flanders, G.0383.16N 11U53.16N ; Hercules Foundation, the Flemish Government; UAntwerpen; We acknowledge financial support from the Fund for Scientific Research – Flanders (FWO); grant numbers G.0383.16N and 11U53.16N. The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI), and the UAntwerpen. We would also like to thank G. Van Loon from the University of Antwerp for building the DVP reactor. Approved Most recent IF: 7.7; 2020 IF: 4.292  
  Call Number PLASMANT @ plasmant @c:irua:167593 Serial 6356  
Permanent link to this record
 

 
Author Lin, A.; Sahun, M.; Biscop, E.; Verswyvel, H.; De Waele, J.; De Backer, J.; Theys, C.; Cuypers, B.; Laukens, K.; Berghe, W.V.; Smits, E.; Bogaerts, A. pdf  url
doi  openurl
  Title Acquired non-thermal plasma resistance mediates a shift towards aerobic glycolysis and ferroptotic cell death in melanoma Type A1 Journal article
  Year 2023 Publication Drug resistance updates Abbreviated Journal  
  Volume 67 Issue Pages (down) 100914  
  Keywords A1 Journal article; Pharmacology. Therapy; ADReM Data Lab (ADReM); Center for Oncological Research (CORE); Proteinscience, proteomics and epigenetic signaling (PPES); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract To gain insights into the underlying mechanisms of NTP therapy sensitivity and resistance, using the firstever

NTP-resistant cell line derived from sensitive melanoma cells (A375).

Methods: Melanoma cells were exposed to NTP and re-cultured for 12 consecutive weeks before evaluation

against the parental control cells. Whole transcriptome sequencing analysis was performed to identify differentially

expressed genes and enriched molecular pathways. Glucose uptake, extracellular lactate, media acidification,

and mitochondrial respiration was analyzed to determine metabolic changes. Cell death inhibitors were

used to assess the NTP-induced cell death mechanisms, and apoptosis and ferroptosis was further validated via

Annexin V, Caspase 3/7, and lipid peroxidation analysis.

Results: Cells continuously exposed to NTP became 10 times more resistant to NTP compared to the parental cell

line of the same passage, based on their half-maximal inhibitory concentration (IC50). Sequencing and metabolic

analysis indicated that NTP-resistant cells had a preference towards aerobic glycolysis, while cell death analysis

revealed that NTP-resistant cells exhibited less apoptosis but were more vulnerable to lipid peroxidation and

ferroptosis.

Conclusions: A preference towards aerobic glycolysis and ferroptotic cell death are key physiological changes in

NTP-resistance cells, which opens new avenues for further, in-depth research into other cancer types.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000925156500001 Publication Date 2022-12-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1368-7646 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 24.3 Times cited Open Access OpenAccess  
  Notes The authors would like to thank Dr. Christophe Deben and Ms. Hannah Zaryouh (Center for Oncological Research, University of Antwerp) for the use and their help with the D300e Digital Dispenser and Spark® Cyto, as well as Ms. Rapha¨elle Corremans (Laboratory Pathophysiology, University of Antwerp) for the use of their lactate meter. The authors would also like to acknowledge the help from Ms. Tias Verhezen and Mr. Cyrus Akbari, who was involved at the start of the project but could not continue due to the COVID-19 pandemic. The authors also acknowledge the resources and services provided by the VSC (Flemish Supercomputer Center). This work was funded in part by the Research Foundation – Flanders (FWO) and the Flemish Government. The FWO fellowships and grants that funded this work also include: 12S9221N (Abraham Lin), G044420N (Abraham Lin, Annemie Bogaerts), and 1S67621N (Hanne Verswyvel). We would also like to thank several patrons, as part of this research was funded by donations from different donors, including Dedert Schilde vzw, Mr. Willy Floren, and the Vereycken family. We would also like to acknowledge the support from the European Cooperation in Science & Technology (COST) Action on Therapeutical applications of Cold Plasmas (CA20114; PlasTHER). Approved Most recent IF: 24.3; 2023 IF: 10.906  
  Call Number PLASMANT @ plasmant @c:irua:193167 Serial 7240  
Permanent link to this record
 

 
Author Khalilov, U.; Yusupov, M.; Eshonqulov, Gb.; Neyts, Ec.; Berdiyorov, Gr. pdf  url
doi  openurl
  Title Atomic level mechanisms of graphene healing by methane-based plasma radicals Type A1 Journal Article
  Year 2023 Publication FlatChem Abbreviated Journal FlatChem  
  Volume 39 Issue Pages (down) 100506  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000990342500001 Publication Date 2023-04-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2452-2627 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 6.2 Times cited Open Access OpenAccess  
  Notes U.K., M.Y. and G.B.E. acknowledge the support of the Agency for Innovative Development of the Republic of Uzbekistan (Grant numbers F-FA-2021-512 and FZ-2020092435). The computational resources and services used in this work were partially provided by the HPC core facility CalcUA of the Universiteit Antwerpen and VSC (Flemish Supercomputer Center), funded by the FWO and the Flemish Government. Approved Most recent IF: 6.2; 2023 IF: NA  
  Call Number PLASMANT @ plasmant @c:irua:197442 Serial 8813  
Permanent link to this record
 

 
Author Tinck, S.; Boullart, W.; Bogaerts, A. doi  openurl
  Title Investigation of etching and deposition processes of Cl2/O2/Ar inductively coupled plasmas on silicon by means of plasmasurface simulations and experiments Type A1 Journal article
  Year 2009 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 42 Issue Pages (down) 095204,1-095204,13  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this paper, a simulation method is described to predict the etching behaviour of Cl2/O2/Ar inductively coupled plasmas on a Si substrate, as used in shallow trench isolation for the production of electronic devices. The hybrid plasma equipment model (HPEM) developed by Kushner et al is applied to calculate the plasma characteristics in the reactor chamber and two additional Monte Carlo simulations are performed to predict the fluxes, angles and energy of the plasma species bombarding the Si substrate, as well as the resulting surface processes such as etching and deposition. The simulations are performed for a wide variety of operating conditions such as gas composition, chamber pressure, power deposition and substrate bias. It is predicted by the simulations that when the fraction of oxygen in the gas mixture is too high, the oxidation of the Si substrate is superior to the etching of Si by chlorine species, resulting in an etch rate close to zero as is also observed in the experiments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000265531000030 Publication Date 2009-04-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 23 Open Access  
  Notes Approved Most recent IF: 2.588; 2009 IF: 2.083  
  Call Number UA @ lucian @ c:irua:75601 Serial 1731  
Permanent link to this record
 

 
Author Tennyson, J.; Mohr, S.; Hanicinec, M.; Dzarasova, A.; Smith, C.; Waddington, S.; Liu, B.; Alves, L.L.; Bartschat, K.; Bogaerts, A.; Engelmann, S.U.; Gans, T.; Gibson, A.R.; Hamaguchi, S.; Hamilton, K.R.; Hill, C.; O’Connell, D.; Rauf, S.; van ’t Veer, K.; Zatsarinny, O. url  doi
openurl 
  Title The 2021 release of the Quantemol database (QDB) of plasma chemistries and reactions Type A1 Journal article
  Year 2022 Publication Plasma Sources Science & Technology Abbreviated Journal Plasma Sources Sci T  
  Volume 31 Issue 9 Pages (down) 095020  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The Quantemol database (QDB) provides cross sections and rates of processes important for plasma models; heavy particle collisions (chemical reactions) and electron collision processes are considered. The current version of QDB has data on 28 917 processes between 2485 distinct species plus data for surface processes. These data are available via a web interface or can be delivered directly to plasma models using an application program interface; data are available in formats suitable for direct input into a variety of popular plasma modeling codes including HPEM, COMSOL, ChemKIN, CFD-ACE+, and VisGlow. QDB provides ready assembled plasma chemistries plus the ability to build bespoke chemistries. The database also provides a Boltzmann solver for electron dynamics and a zero-dimensional model. Thesedevelopments, use cases involving O<sub>2</sub>, Ar/NF<sub>3</sub>, Ar/NF<sub>3</sub>/O<sub>2</sub>, and He/H<sub>2</sub>O/O<sub>2</sub>chemistries, and plans for the future are presented.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000895762200001 Publication Date 2022-09-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0963-0252 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.8 Times cited Open Access OpenAccess  
  Notes Engineering and Physical Sciences Research Council, EP/N509577/1 ; Fundação para a Ciência e a Tecnologia, UIDB/50010/2020 ; Science and Technology Facilities Council, ST/K004069/1 ; National Science Foundation, OAC-1834740 ; Approved Most recent IF: 3.8  
  Call Number PLASMANT @ plasmant @c:irua:192845 Serial 7245  
Permanent link to this record
 

 
Author Verheyen, C.; Silva, T.; Guerra, V.; Bogaerts, A. pdf  url
doi  openurl
  Title The effect of H2O on the vibrational populations of CO2in a CO2/H2O microwave plasma: a kinetic modelling investigation Type A1 Journal article
  Year 2020 Publication Plasma Sources Science & Technology Abbreviated Journal Plasma Sources Sci T  
  Volume 29 Issue 9 Pages (down) 095009  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma has been studied for several years to convert CO2 into value-added products. If CO2 could be converted in the presence of H2O as a cheap H-source for making syngas and oxygenates, it would mimic natural photosynthesis. However, CO2/H2O plasmas have not yet been extensively studied, not by experiments, and certainly not computationally. Therefore, we present here a kinetic modelling study to obtain a greater understanding of the vibrational kinetics of a CO2/H2O microwave plasma. For this purpose, we first created an electron impact cross section set for H2O, using a swarm-derived method. We added the new cross section set and CO2/H2O-related chemistry to a pure CO2 model. While it was expected that H2O addition mainly causes quenching of the CO2 asymmetric mode vibrational levels due to the additional CO2/H2O vibrational-translational relaxation, our model shows that the modifications in the vibrational kinetics are mainly induced by the strong electron dissociative attachment to H2O molecules, causing a reduction in electron density, and the corresponding changes in the input of energy into the CO2 vibrational levels by electron impact processes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000570601300001 Publication Date 2020-09-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.8 Times cited Open Access  
  Notes Fonds Wetenschappelijk Onderzoek, 1184820N ; Fundação para a Ciência e a Tecnologia, under projects UIDB/50010/2020 and ; This research was supported by FWO–PhD fellowshipaspirant, Grant 1184820N. VG and TS were partially supported by the Portuguese FCT, under projects UIDB/50010/2020 and UIDP/50010/2020 Approved Most recent IF: 3.8; 2020 IF: 3.302  
  Call Number PLASMANT @ plasmant @c:irua:172011 Serial 6433  
Permanent link to this record
 

 
Author Cai, H.-bo; Yu, W.; Zhu, S.-ping; Zheng, C.-yang; Cao, L.-hua; Li, B.; Chen, Z.Y.; Bogaerts, A. doi  openurl
  Title Short-pulse laser absorption in very steep plasma density gradients Type A1 Journal article
  Year 2006 Publication Physics of plasmas Abbreviated Journal Phys Plasmas  
  Volume 13 Issue Pages (down) 094504,1-4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Woodbury, N.Y. Editor  
  Language Wos 000240877800057 Publication Date 2006-09-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1070-664X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.115 Times cited 17 Open Access  
  Notes Approved Most recent IF: 2.115; 2006 IF: 2.258  
  Call Number UA @ lucian @ c:irua:59375 Serial 2995  
Permanent link to this record
 

 
Author Sankaran, K.; Swerts, J.; Couet, S.; Stokbro, K.; Pourtois, G. url  doi
openurl 
  Title Oscillatory behavior of the tunnel magnetoresistance due to thickness variations in Ta vertical bar CoFe vertical bar MgO magnetic tunnel junctions : a first-principles study Type A1 Journal article
  Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 94 Issue 94 Pages (down) 094424  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract To investigate the impact of both the CoFe ferromagnetic layer thickness and the capping paramagnetic layer on the tunnel magnetoresistance (TMR), we performed first-principles simulations on epitaxial magnetic tunnel junctions contacted with either CoFe or Ta paramagnetic capping layers. We observed a strong oscillation of the TMR amplitude with respect to the thickness of the ferromagnetic layer. The TMR is found to be amplified whenever the MgO spin tunnel barrier is thickened. Quantization of the electronic structure of the ferromagnetic layers is found to be at the origin of this oscillatory behavior. Metals such as Ta contacting the magnetic layer are found to enhance the amplitude of the oscillations due to the occurrence of an interface dipole. The latter drives the band alignment and tunes the nature of the spin channels that are active during the tunneling process. Subsequently, the regular transmission spin channels are modulated in the magnetic tunnel junction stack and other complex ones are being activated.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000383860700004 Publication Date 2016-09-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 4 Open Access  
  Notes Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:137122 Serial 4468  
Permanent link to this record
 

 
Author Ghimire, B.; Szili, E.J.; Lamichhane, P.; Short, R.D.; Lim, J.S.; Attri, P.; Masur, K.; Weltmann, K.-D.; Hong, S.-H.; Choi, E.H. pdf  url
doi  openurl
  Title The role of UV photolysis and molecular transport in the generation of reactive species in a tissue model with a cold atmospheric pressure plasma jet Type A1 Journal article
  Year 2019 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 114 Issue 9 Pages (down) 093701  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Cold atmospheric pressure plasma jets (plasma) operated in ambient air provide a rich source of reactive oxygen and nitrogen species (RONS), which are known to influence biological processes important in disease. In the plasma treatment of diseased tissue such as subcutaneous cancer tumors, plasma RONS need to first traverse an interface between the plasma-skin surface and second be transported to millimeter depths in order to reach deep-seated diseased cells. However, the mechanisms in the plasma generation of RONS within soft tissues are not understood. In this study, we track the plasma jet delivery of RONS into a tissue model target and we delineate two processes: through target delivery of RONS generated (primarily) in the plasma jet and in situ RONS generation by UV photolysis within the target. We demonstrate that UV photolysis promotes the rapid generation of RONS in the tissue model target’s surface after which the RONS are transported to millimeter depths via a slower molecular process. Our results imply that the flux of UV photons from plasma jets is important for delivering RONS through seemingly impenetrable barriers such as skin. The findings have implications not only in treatments of living tissues but also in the functionalization of soft hydrated biomaterials such as hydrogels and extracellular matrix derived tissue scaffolds.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000460820600048 Publication Date 2019-03-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 12 Open Access Not_Open_Access  
  Notes National Research Foundation of Korea, NRF-2016K1A4A3914113 ; Australian Research Council, DP16010498 ; This work was supported by the National Research Foundation of Korea (NRF) Grant No. NRF-2016K1A4A3914113 and in part by Kwangwoon University 2018, Korea. E.J.S., S.-H.H., and R.D.S. wish to thank the Australian Research Council for partially supporting this research through Discovery Project No. DP16010498 and UniSA through the Vice Chancellor Development Fund. Approved Most recent IF: 3.411  
  Call Number PLASMANT @ plasmant @UA @ admin @ c:irua:158111 Serial 5159  
Permanent link to this record
 

 
Author Kolev, I.; Bogaerts, A. pdf  doi
openurl 
  Title Calculation of gas heating in a dc sputter magnetron Type A1 Journal article
  Year 2008 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 104 Issue 9 Pages (down) 093301,1-093301,8  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The effect of gas heating in laboratory sputter magnetrons is investigated by means of numerical modeling. The model is two-dimensional in the coordinate space and three-dimensional in the velocity space based on the particle-in-cellMonte Carlo collisions technique. It is expanded in a way that allows the inclusion of the neutral plasma particles (fast gas atoms and sputtered atoms), which makes it possible to calculate the gas temperature and its influence on the discharge behavior in a completely self-consistent way. The results of the model are compared to experimental measurements and to other existing simulation results. The results show that gas heating is pressure dependent (rising with the increase in the gas pressure) and should be taken into consideration at pressures above 10 mTorr.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000260941700017 Publication Date 2008-11-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 19 Open Access  
  Notes Approved Most recent IF: 2.068; 2008 IF: 2.201  
  Call Number UA @ lucian @ c:irua:71286 Serial 267  
Permanent link to this record
 

 
Author Yusupov, M.; Neyts, E.C.; Khalilov, U.; Snoeckx, R.; van Duin, A.C.T.; Bogaerts, A. url  doi
openurl 
  Title Atomic-scale simulations of reactive oxygen plasma species interacting with bacterial cell walls Type A1 Journal article
  Year 2012 Publication New journal of physics Abbreviated Journal New J Phys  
  Volume 14 Issue 9 Pages (down) 093043  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In recent years there has been growing interest in the use of low-temperature atmospheric pressure plasmas for biomedical applications. Currently, however, there is very little fundamental knowledge regarding the relevant interaction mechanisms of plasma species with living cells. In this paper, we investigate the interaction of important plasma species, such as O3, O2 and O atoms, with bacterial peptidoglycan (or murein) by means of reactive molecular dynamics simulations. Specifically, we use the peptidoglycan structure to model the gram-positive bacterium Staphylococcus aureus murein. Peptidoglycan is the outer protective barrier in bacteria and can therefore interact directly with plasma species. Our results demonstrate that among the species mentioned above, O3 molecules and especially O atoms can break important bonds of the peptidoglycan structure (i.e. CO, CN and CC bonds), which subsequently leads to the destruction of the bacterial cell wall. This study is important for gaining a fundamental insight into the chemical damaging mechanisms of the bacterial peptidoglycan structure on the atomic scale.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000309393400001 Publication Date 2012-09-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1367-2630; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.786 Times cited 47 Open Access  
  Notes Approved Most recent IF: 3.786; 2012 IF: 4.063  
  Call Number UA @ lucian @ c:irua:101014 Serial 189  
Permanent link to this record
 

 
Author Clima, S.; Wouters, D.J.; Adelmann, C.; Schenk, T.; Schroeder, U.; Jurczak, M.; Pourtois, G. doi  openurl
  Title Identification of the ferroelectric switching process and dopant-dependent switching properties in orthorhombic HfO2 : a first principles insight Type A1 Journal article
  Year 2014 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 104 Issue 9 Pages (down) 092906  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The origin of the ferroelectric polarization switching in orthorhombic HfO2 has been investigated by first principles calculations. The phenomenon can be regarded as being the coordinated displacement of four O ions in the orthorhombic unit cell, which can lead to a saturated polarization as high as 53 mu C/cm(2). We show the correlation between the computed polarization reversal barrier and the experimental coercive fields. (C) 2014 AIP Publishing LLC.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000332729200078 Publication Date 2014-03-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951;1077-3118; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 79 Open Access  
  Notes Approved Most recent IF: 3.411; 2014 IF: 3.302  
  Call Number UA @ lucian @ c:irua:116873 Serial 1550  
Permanent link to this record
 

 
Author Martens, T.; Bogaerts, A.; Brok, W.J.M.; van Dijk, J. doi  openurl
  Title The influence of impurities on the performance of the dielectric barrier discharge Type A1 Journal article
  Year 2010 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 96 Issue 9 Pages (down) 091501,1-091501,3  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this letter, we investigate the effect of various levels of nitrogen impurity on the electrical performance of an atmospheric pressure dielectric barrier discharge in helium. We illustrate the different current profiles that are obtained, which exhibit one or more discharge pulses per half cycle and evaluate their performance in ionizing the discharge and dissipating the power. It is shown that flat and broad current profiles perform the best in ionizing the discharge and use the least amount of power per generated charged particle.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000275246200008 Publication Date 2010-03-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 28 Open Access  
  Notes Approved Most recent IF: 3.411; 2010 IF: 3.841  
  Call Number UA @ lucian @ c:irua:80944 Serial 1624  
Permanent link to this record
 

 
Author Yue-Feng, Z.; Chao, W.; Wang, W.-Z.; Li, L.; Hao, S.; Tao, S.; Jie, P. doi  openurl
  Title Numerical simulation on particle density and reaction pathways in methane needle-plane discharge plasma at atmospheric pressure Type A1 Journal article
  Year 2018 Publication Wuli xuebao Abbreviated Journal Acta Phys Sin-Ch Ed  
  Volume 67 Issue 8 Pages (down) 085202  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Methane needle-plane discharge has practical application prospect and scientific research significance since methane conversion heavy oil hydrogenation is formed by coupling methane needle-plane discharge with heavy oil hydrogenation, which can achieve high-efficient heavy oil hydrogenation and increase the yields of high value-added light olefins. In this paper, a two-dimensional fluid model is built up for numerically simulating the methane needle-plane discharge plasma at atmospheric pressure. Spatial and axial distributions of electric intensity, electron temperature and particle densities are obtained. Reaction yields are summarized and crucial pathways to produce various kinds of charged and neutral particles are found out. Simulation results indicate that axial evolutions of CH3+ and CH4+ densities, electric intensity and electron temperature are similar and closely related. The CH5+ and C2H5+ densities first increase and then decrease along the axial direction. The CH3 and H densities have nearly identical spatial and axial distributions. Particle density distributions of CH2, C2H4 and C2H5 are obviously different in the area near the cathode but comparatively resemblant in the positive column region. The CH3+ and CH4+ are produced by electron impact ionizations between electrons and CH4. The CH5+ and C2H5+ are respectively generated by molecular impact dissociations between CH3+ and CH4 and between CH4+ and CH4. Electron impact decomposition between electrons and CH4 is a dominated reaction to produce CH3, CH2, CH and H. The reactions between CH2 and CH4 and between electrons and C2H4 are critical pathways to produce C2H4 and C2H2, respectively. In addition, the yields of electron impact decomposition reactions between electrons and CH4 and reactions between CH2 and CH4 account for 52.15% and 47.85% of total yields of H-2 respectively.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000443194600017 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1000-3290 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 0.624 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 0.624  
  Call Number UA @ lucian @ c:irua:153771 Serial 5120  
Permanent link to this record
 

 
Author Van Laer, K.; Bogaerts, A. pdf  url
doi  openurl
  Title How bead size and dielectric constant affect the plasma behaviour in a packed bed plasma reactor: a modelling study Type A1 Journal article
  Year 2017 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 26 Issue 26 Pages (down) 085007  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Packed bed plasma reactors (PBPRs) are gaining increasing interest for use in environmental applications, such as greenhouse gas conversion into value-added chemicals or renewable fuels and volatile pollutant removal (e.g. NOx, VOC, K), as they enhance the conversion and energy efficiency of the process compared to a non-packed reactor. However, the plasma behaviour in a PBPR is not well understood. In this paper we demonstrate, by means of a fluid model, that the discharge behaviour changes considerably when changing the size of the packing beads and their dielectric constant, while keeping the interelectrode spacing constant. At low dielectric constant, the plasma is spread out over the full discharge gap, showing significant density in the voids as well as in the connecting void channels. The electric current profile shows a strong peak during each half cycle. When the dielectric constant increases, the plasma becomes localised in the voids, with a current profile consisting of many smaller peaks during each half cycle. For large bead sizes, the shift from full gap discharge to localised discharges takes place at a higher dielectric constant than for smaller beads. Furthermore, smaller beads or beads with a lower dielectric constant require a higher breakdown voltage to cause plasma formation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000406503600003 Publication Date 2017-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 22 Open Access OpenAccess  
  Notes K Van Laer is indebted to the Institute for the Promotion of Innovation by Science and Technology in Flanders (IWT Flanders) for financial support. This research was carried out in the framework of the network on Physical Chemistry of Plasma-Surface Interactions – Interuniversity Attraction Poles, phase VII (http://psi-iap7.ulb.ac.be/), and supported by the Belgian Science Policy Office (BELSPO). The calculations were carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. Approved Most recent IF: 3.302  
  Call Number PLASMANT @ plasmant @ c:irua:144796 Serial 4635  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: