|
Record |
Links |
|
Author |
Van Laer, K.; Bogaerts, A. |
|
|
Title |
How bead size and dielectric constant affect the plasma behaviour in a packed bed plasma reactor: a modelling study |
Type |
A1 Journal article |
|
Year |
2017 |
Publication |
Plasma sources science and technology |
Abbreviated Journal |
Plasma Sources Sci T |
|
|
Volume |
26 |
Issue |
26 |
Pages |
085007 |
|
|
Keywords |
A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT) |
|
|
Abstract |
Packed bed plasma reactors (PBPRs) are gaining increasing interest for use in environmental applications, such as greenhouse gas conversion into value-added chemicals or renewable fuels and volatile pollutant removal (e.g. NOx, VOC, K), as they enhance the conversion and energy efficiency of the process compared to a non-packed reactor. However, the plasma behaviour in a PBPR is not well understood. In this paper we demonstrate, by means of a fluid model, that the discharge behaviour changes considerably when changing the size of the packing beads and their dielectric constant, while keeping the interelectrode spacing constant. At low dielectric constant, the plasma is spread out over the full discharge gap, showing significant density in the voids as well as in the connecting void channels. The electric current profile shows a strong peak during each half cycle. When the dielectric constant increases, the plasma becomes localised in the voids, with a current profile consisting of many smaller peaks during each half cycle. For large bead sizes, the shift from full gap discharge to localised discharges takes place at a higher dielectric constant than for smaller beads. Furthermore, smaller beads or beads with a lower dielectric constant require a higher breakdown voltage to cause plasma formation. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000406503600003 |
Publication Date |
2017-07-27 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1361-6595 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
3.302 |
Times cited |
22 |
Open Access |
OpenAccess |
|
|
Notes |
K Van Laer is indebted to the Institute for the Promotion of Innovation by Science and Technology in Flanders (IWT Flanders) for financial support. This research was carried out in the framework of the network on Physical Chemistry of Plasma-Surface Interactions – Interuniversity Attraction Poles, phase VII (http://psi-iap7.ulb.ac.be/), and supported by the Belgian Science Policy Office (BELSPO). The calculations were carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. |
Approved |
Most recent IF: 3.302 |
|
|
Call Number |
PLASMANT @ plasmant @ c:irua:144796 |
Serial |
4635 |
|
Permanent link to this record |