|
Record |
Links |
|
Author |
Cui, Z.; Hao, Y.; Jafarzadeh, A.; Li, S.; Bogaerts, A.; Li, L. |
|
|
Title |
The adsorption and decomposition of SF6 over defective and hydroxylated MgO surfaces: A DFT study |
Type |
A1 Journal article |
|
Year |
2023 |
Publication |
Surfaces and interfaces |
Abbreviated Journal |
|
|
|
Volume |
36 |
Issue |
|
Pages |
102602 |
|
|
Keywords |
A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT) |
|
|
Abstract |
Plasma degradation is one of the most effective methods for the abatement of greenhouse gas sulfur hexafluoride
(SF6). To evaluate the potential of MgO as a catalyst in plasma degradation, we investigate the catalytic properties
of MgO on SF6 adsorption and activation by density functional theory (DFT) where the O-defective and
hydroxylated surfaces are considered as two typical plasma-generated surfaces. Our results show that perfect
MgO (001) and (111) surfaces cannot interact with SF6 and only physical adsorption happens. In case of Odefective
MgO surfaces, the O vacancy is the most stable adsorption site. SF6 undergoes a decomposition to SF5
and F over the O-defective MgO (001) surface and undergoes an elongation of the bottom S-F bond over the Odefective
(111) surface. Besides, SF6 shows a physically adsorption at the stepsite of the MgO (001) surface,
accompanied by small changes in its bond angle and length. Furthermore, SF6 is found to be physically and
chemically adsorbed over 0.5 and 1.0 ML (monolayer) H-covered O-terminated MgO (111) surfaces, respectively.
The SF6 molecule undergoes a self-decomposition on the 1.0 ML hydroxylated surface via a surface bonding
process. This study shows that defective and hydroxylated MgO surfaces have the surface capacities for SF6
activation, which shows that MgO has potential as packing material in SF6 waste treatment in packed-bed
plasmas. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000916285000001 |
Publication Date |
2022-12-24 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2468-0230 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
6.2 |
Times cited |
|
Open Access |
OpenAccess |
|
|
Notes |
National Natural Science Foundation of China, 52207155 ; Fonds Wetenschappelijk Onderzoek; Vlaams Supercomputer Centrum; Vlaamse regering; |
Approved |
Most recent IF: 6.2; 2023 IF: NA |
|
|
Call Number |
PLASMANT @ plasmant @c:irua:194364 |
Serial |
7244 |
|
Permanent link to this record |