

This item is the archived peer-reviewed author-version of:

The adsorption and decomposition of SF6 over defective and hydroxylated MgO surfaces : a DFT study

Reference:

Cui Zhaolun, Hao Yanpeng, Jafarzadeh Amin, Li Shangkun, Bogaerts Annemie, Li Licheng.- The adsorption and decomposition of SF₆ over defective and hydroxylated MgO surfaces : a DFT study Surfaces and interfaces - ISSN 2468-0230 - 36(2023), 102602 Full text (Publisher's DOI): https://doi.org/10.1016/J.SURFIN.2022.102602 To cite this reference: https://hdl.handle.net/10067/1943640151162165141

uantwerpen.be

Institutional repository IRUA

1 The adsorption and decomposition of SF₆ over defective and

2

hydroxylated MgO surfaces: A DFT study

3 Zhaolun Cui^a, Yanpeng Hao^a*, Amin Jafarzadeh^b, Shangkun Li^b, Annemie Bogaerts^b, Licheng Li^a

^aSchool of Electric Power Engineering, South China University of Technology, Guangzhou 510630,
 China

- 6 ^bResearch group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein
- 7 1, BE-2610 Wilrijk-Antwerp, Belgium

8 Abstract: Plasma degradation is one of the most effective methods for the abatement of greenhouse gas sulfur hexafluoride (SF₆). To evaluate the potential of MgO as a catalyst in plasma degradation, 9 we investigate the catalytic properties of MgO on SF₆ adsorption and activation by density 10 11 functional theory (DFT) where the O-defective and hydroxylated surfaces are considered as two 12 typical plasma-generated surfaces. Our results show that perfect MgO (001) and (111) surfaces 13 cannot interact with SF₆ and only physical adsorption happens. In case of O-defective MgO surfaces, the O vacancy is the most stable adsorption site. SF_6 undergoes a decomposition to SF_5 and F over 14 15 the O-defective MgO (001) surface and undergoes an elongation of the bottom S-F bond over the O-defective (111) surface. Besides, SF₆ shows a physically adsorption at the stepsite of the MgO 16 17 (001) surface, accompanied by small changes in its bond angle and length. Furthermore, SF_6 is 18 found to be physically and chemically adsorbed over 0.5 and 1.0 ML (monolayer) H-covered O-19 terminated MgO (111) surfaces, respectively. The SF_6 molecule undergoes a self-decomposition on 20 the 1.0 ML hydroxylated surface via a surface bonding process. This study shows that defective and 21 hydroxylated MgO surfaces have the surface capacities for SF_6 activation, which shows that MgO 22 has potential as packing material in SF₆ waste treatment in packed-bed plasmas.

23 Keywords: SF₆, MgO, surface property, adsorption, DFT

24 **1 Introduction**

In recent decades, SF_6 has been widely used in the power industry as a dielectric gas, due to its excellent properties on insulation and arc extinction [1]. However, SF_6 is a greenhouse gas and is listed as one of the restricted emission gases in the Kyoto protocol [2]. The global warming potential of SF_6 is 23500 times that of CO_2 [3]. Therefore, its increasing use and emission cause great threats to the atmospheric environment.

30 Since the end of last century, great efforts have been made on SF_6 abatement. The most used 31 method is thermal degradation, where SF₆ is decomposed and reacts with CaO or Ca(OH)₂ in a 1100° 32 C furnace[1]. However, the maintenance of high temperature and the overload of alkaline solids 33 leads to high energy consumption. By adding metallic phosphate or metallic oxide, the degradation 34 temperature of SF₆ can be lowered to 600~900 K, gaining a better energy efficiency, but the 35 degradation rate is limited [4, 5]. Besides, researchers found that non-thermal plasma (NTP) holds 36 promise for SF_6 abatement, by means of dielectric barrier discharges (DBD), micro-discharges, 37 radio-frequency discharges, and so on [6]. In NTP treatment, the SF₆ molecules can be effectively degraded at atmospheric temperature and pressure, but toxic gas products like SO₂F₂, SO₂, and HF 38 are generated. The addition of metal oxide like Al₂O₃ in NTP, typically as a packing material in a 39

so-called packed bed DBD, improves the degradation of SF_6 and regulates its reaction pathway [7, 1 2 8]. In 2020, Yael et. al. achieved a sustainable and tunable degradation of SF_6 by a Mg/MgO 3 plasmon-catalytic system, where the S and F elements are fixed as MgF₂ and MgSO₄, respectively. The reacted Mg products can then be reduced by hydrogen plasma for reuse [9]. Although the 4 5 degradation rate is limited in the above study, it shows the potential of MgO for SF₆ catalytic 6 degradation. In a plasma-catalytic system, the plasma discharge has significant impact on the 7 packing material surface, thus affecting the surface reactions [10, 11]. For instance, during a thermal 8 or a NTP-based degradation of SF₆, O₂, H₂O and H₂ are often added as reactive gases to promote 9 the degradation and regulate the product distribution [12, 13]. MgO therefore could be affected from 10 the gas environment to form O-terminated surfaces in O-rich conditions and get hydroxylated by H 11 species [14, 15]. To further evaluate the catalytic property of MgO and whether it can be integrated 12 with other technologies, such as thermal catalysis and plasma catalysis (i.e., as packing material in 13 packed bed DBD plasmas), the interaction between SF₆ and MgO should be carefully investigated. 14 In this work, we carried out a density functional theory (DFT) study on the adsorption and the 15 decomposition of SF_6 over MgO surfaces. The (001) and O-terminated (111) surfaces are selected as the typical MgO surfaces since they have been entensively studied in previous works as the 16 17 representitive catalytic surfaces [16, 17]. The O vacancy, stepsite and H coverage are taken into 18 consideration to better describe the surface conditions that correspond to the actual MgO materials 19 in plasma-catalysis. Charge analysis is carried out to uncover the bonding and the charge transfer 20 processes between the SF₆ molecules and the MgO surfaces. The results reveal that chemical adsorption only happens over special sites, like O vacancies and H-covered surfaces. Our study 21 22 demonstrates that MgO is a potential catalyst or packing material for SF₆ degradation in NTP 23 abatement.

24 2 Computational details

25 The DFT calculations are carried out by the CP2K/Quickstep package [18]. The generalized 26 gradient approximation of Perdew-Burke-Ernzerhof functional is applied to describe the exchange-27 correlation terms [19]. The DFT-D3 method is used for the dispersion correction [20]. The 28 Goedecker-Teter-Hutter (GTH) pseudopotentials are applied to describe the core electrons [21], 29 and the Gaussian and plane wave method (GPW) is applied, with a plane wave cutoff to be 800 Ry [22]. The molecularly optimized double- ζ polarized basis sets (m-DZVP) are applied for the 30 31 expansion of the wave functions. Bader analysis is used to describe the charge transfer process [23]. 32 The (001) and O-terminated (111) MgO slab models are built, as shown in Fig. S1. Both slabs 33 have five layers and the bottom two layers are fixed during the calculation. The XY dimensions are 34 11.91×11.91 Å for both slabs and a vacuum layer of 30 Å is applied to avoid periodic interactions. 35 The O vacancy is made by removing one of the O surface atoms from the (001) and (111) surface, as shown in Fig. S2 [24, 25]. The step site of the MgO (001) slab is made according the Ref. [26], 36 37 where the atoms in the right part of the surface layer are removed and the edge composed of O atoms 38 is exposed. The O-terminated MgO (111) surfaces with H coverages of 50% or 100% (labelled to 39 be 0.5 and 1.0 ML) are made according to Ref. [27] to simulate the hydration effects of the MgO 40 material, as shown in Fig. S3. During the calculation, the surface dipole correction is applied for the 41 MgO (111) surfaces.

42 The adsorption energy E_{ad} of gas molecules on the MgO surface is calculated by Eq (1).

$$E_{\rm ad} = E_{\rm gas+slab} - E_{\rm gas} - E_{\rm slab} \tag{1}$$

1 Where E_{gas} and E_{slab} are the energies of gas molecules and of the MgO slabs, respectively, and

2 $E_{\text{gas+slab}}$ is the total energy of the adsorbed system. A more negative E_{ad} corresponds to a more stable

3 adsorption.

4 **3 Results and discussion**

5 3.1 SF₆ adsorption on perfect MgO (001) and (111) surfaces

The stable adsorption configurations of SF_6 over perfect MgO (001) and (111) surfaces are 6 7 calculated, as shown in Fig.1 and Fig.2. For each site, two kinds of initial configurations are 8 considered, one of them is the S-F bond set perpendicular to the surface, and the other is the two 9 bottom F atoms parallel to the surface. The configuration with a more negative E_{ad} is considered to 10 be the stable one. The adsorption energies E_{ad} and the distance between SF₆ and the slab surface are summarized in Table 1. In Fig.1 and Fig.2, there is no chemical bonding made between the SF_6 11 12 molecule and the MgO surfaces. At the same time, the SF₆ molecule structure has no obvious change after the adsorption and this indicates that only physical adsorptions happen. The E_{ad} of SF₆ at Mg, 13 14 O and the hollow sites over the MgO (001) surface are all the same, i.e., -0.21 eV, while SF₆ 15 adsorbing at the hollow site has the smallest adsorption distance of 2.45 Å. By contrast, over the MgO (111) surface, the most stable adsorption shows up at the hollow site, with the highest E_{ad} to 16 17 be -0.23 eV. However, SF_6 adsorbing at the hollow site shows the largest adsorption distance to be 2.71 Å. The smallest adsorption distance shows up at the Mg site, with E_{ad} to be only -0.16 eV. 18 19 These results indicate that the interaction between the SF₆ molecule and the perfect MgO surfaces 20 is very weak and the adsorption process is mainly induced by the Van der Waals forces.

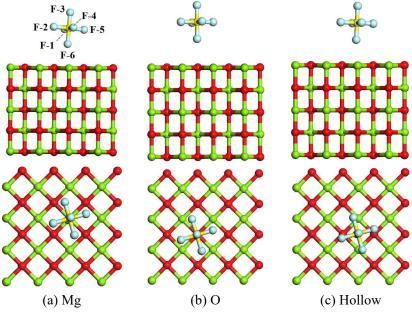


Fig. 1 Adsorption configurations of SF₆ over the perfect MgO (001) surface, in side view (upper
 panels) and top view (lower panels). Green, red, yellow and blue balls are Mg, O, S and F atoms,
 respectively.

24 25

26

Table 1 Adsorption energy and distance of SF₆ over perfect MgO (001) and (111) surfaces

Adsorption	MgO (001)		MgO (111)	
site	$E_{\rm ad}~({\rm eV})$	Adsorption distance ^a (Å)	$E_{\rm ad}({\rm eV})$	Adsorption distance ^a (Å)

Mg	-0.21	2.51	-0.16	2.21	
0	-0.21	2.80	-0.20	2.51	
Hollow	-0.21	2.83	-0.23	2.68	

1 ^aThis corresponds to the distance between the bottom F atom in SF₆ and the closest surface atom on the

2 MgO surface.

3

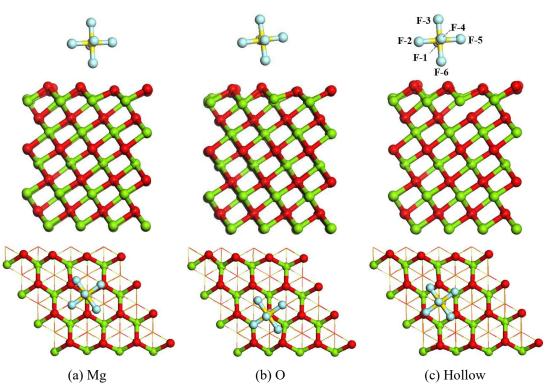


Fig. 2 Adsorption configurations of SF₆ over the perfect O-terminated MgO (111) surface, in side
view (upper panels) and top view (lower panels). Green, red, yellow and blue balls are Mg, O, S
and F atoms, respectively.

7

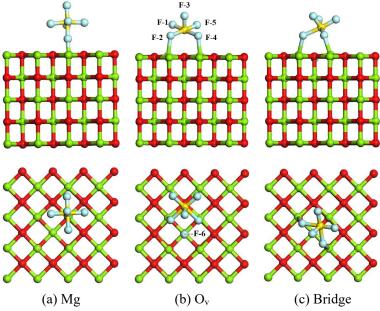
8 3.2 SF₆ adsorption over O-defective MgO (001) and (111) surfaces

9 Deficient MgO surfaces have been proven to show a better surface property than perfect surfaces for the adsorption and activation of gas molecules and doped atoms [28, 29]. In this study, the 10 adsorption processes of SF₆ over O-defective MgO (001) and (111) surfaces are calculated. The E_{ad} , 11 the adsorption distance and optimized configurations are summarized in Table 2, Fig.3 and Fig.4. 12 13 In Fig.3, SF₆ undergoes a chemical adsorption over the O-defective MgO (001) surface and the O_v site is the most stable site for SF₆ adsorption, corresponding to the highest E_{ad} of -6.66 eV. At 14 this site, the SF₆ molecule decomposes to SF₅*(*means the species is adsorbed) and F*, where the 15 F* atom fills the O vacancy, as shown in Fig.3(b). Similarly, at the bridge site, the SF₆ molecule 16 17 decomposes to SF₅* and F*, with E_{ad} equal to -6.54 eV. However, at the Mg site, there is no 18 decomposition of SF₆, but the bottom F in SF₆ binds with the surface Mg, with E_{ad} of -6.01 eV.

19

21

Table 2 Adsorption energy and distance of SF₆ over MgO (001) and MgO (111) surfaces with O


vacancy

Adsorption	MgO (001)		MgO (111)	
site	$E_{\rm ad}~({\rm eV})$	Adsorption distance ^a (Å)	$E_{\rm ad}~({\rm eV})$	Adsorption distance ^a (Å)

Mg	-6.01	1.61	-0.22	2.74	
$O_{\rm v}$	-6.66		-0.58		
Bridge	-6.54				
Neighbor-O			-0.21	2.75	

1 ^aThis corresponds to the distance between the bottom F atom in SF₆ and the closest surface atom on the

2 MgO surface.

3 Fig. 3 Adsorption configurations of SF_6 over the MgO (001) surface with O vacancy, in side view

4 (upper panels) and top view (lower panels). Green, red, yellow and blue balls are Mg, O, S and F

atoms, respectively.

5

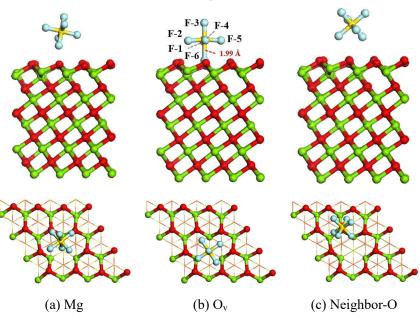


Fig. 4 Adsorption configurations of SF₆ over the MgO (111) surface with O vacancy, in side view
 (upper panels) and top view (lower panels). Green, red, yellow and blue balls are Mg, O, S and F
 atoms, respectively.

9

10 By contrast, over the O-defective MgO (111) surface, E_{ad} is much lower. The O vacancy is also

the most stable site for SF₆ adsorption, corresponding to E_{ad} of -0.58 eV. Unlike the selfdecomposition of SF₆ over the MgO (001) surface, the adsorption of SF₆ at the O_v site on the MgO (111) surface shows an elongation of the bottom S-F bond, from 1.61 Å to 1.99 Å (Fig.4(b)). On the other hand, in Fig.4 (a) and (c), the SF₆ molecule undergoes physical adsorption at both the Mg and neighboring O sites, corresponding to E_{ad} of -0.22 eV and -0.21 eV, respectively.

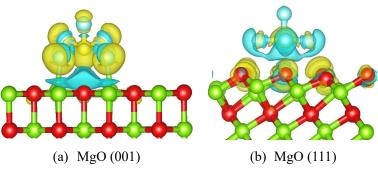
6 7

8

9

Table 3 Bader charge distributions of SF₆ in the gas phase, at the Mg site over the perfect MgO (001) surface, at the hollow site over the perfect MgO (111) and at the O_v site over the O-defective MgO (001) and (111) surfaces (Unit: eV)

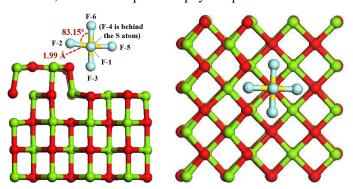
_						
	Gas	Mg site over	O _v site over the	Hollow site	O _v site over the	
Atom		the perfect	defective MgO	over the perfect	defective MgO	
	phase	MgO (001)	(001)	MgO (111)	(111)	
S	0.00	0.00	2.52	0.00	0.00	
F-1	8.01	8.02	7.99	8.01	8.18	
F-2	7.99	8.00	7.68	8.02	8.03	
F-3	7.99	7.98	8.12	7.99	8.01	
F-4	8.01	8.02	7.68	8.01	8.05	
F-5	8.00	8.00	8.00	7.99	8.02	
F-6	8.00	8.04	7.96	7.96	7.74	
Sum ^a	0	0.06	1.95	-0.02	0.03	


10 ^aThe total charge here is the value after subtracting the number of electrons in the valence layer of each

11 atom of S and F (6 for S and 7 for F), which shows the overall charge change of the SF₆ molecule itself

after the chemical reaction. Positive values indicate the gain of electrons. F atoms are labeled in Fig.1,Fig.2, Fig.3, and Fig.4.

14 In order to better understanding the interaction between SF₆ and the O-defective MgO surfaces, 15 we calculated the Bader charge distributions and the partial charge distributions for the most stable adsorption configurations of the MgO (001) and (111) systems, as shown in Table 3 and Fig.5. For 16 17 comparison, the Bader charges of two adsorption cases over the perfect MgO surfaces, as well as 18 the gas-phase SF₆ molecule are calculated and summarized in Table 3 as well. From Table 3 we can 19 see that SF₆ gains 1.95 |e| after its adsorption over the O-defective MgO (001) surface. In the SF₆ 20 molecule, the S atom gains 2.52 |e|, while the F-2 and F-4 in Fig.3(b) lose 0.32 |e| each, which are 21 two F atoms bonding with the surface Mg. This indicates that a strong electron transfer occurs during 22 the adsorption, where SF_6 and surface MgO atoms act as the electron acceptor and donor, 23 respectively, leading to a valence changing of the S and F atoms in SF₆. By comparison, the total 24 charge transfer processes are very limited in other three adsorption cases, which are less than 0.1 |e|. 25 However, from Table.3 and Fig.5(b) we can see that the F-6 (bottom F in SF₆) in the MgO (111) system loses 0.26 |e| after the SF₆ adsorption, which weakens the S-F bond and leads to S-F bond 26 27 elongation. In general, the O-defective MgO (001) surface shows a significant surface property for SF₆ adsorption and activation, allowing SF₆ to decompose into SF₅* and F* over the surface during 28 29 the adsorption. The adsorption of SF_6 over the O-defective MgO (111) surface is much weaker, but 30 an elongation of the bottom S-F bond occurs, corresponding to a weaker activation of SF₆. This is 31 in contract to the behavior at the perfect MgO surfaces, where the SF₆ molecule hardly interacts 32 with the surface atoms and only physical adsorption happens.


33

- 1 Fig. 5 Differential charge distribution of SF_6 at the O_v site on the MgO(001) and (111) surfaces.
- 2 The yellow region indicates an increase in charge density and the cyan region indicates a decrease.
- 3

4 **3.3** SF₆ adsorption on the step-shape MgO (001) surface

- 5 The step site of the MgO surface could also be an active site for SF_6 adsorption [22]. As shown
- 6 in Fig.6, the SF₆ molecule shows a deformation after adsorbing at the step site over the MgO (001)
- 7 surface. The bond angle of F(2)-S-F(6) changes from 90° to 83.15° and the S-F(2) bond length
- 8 increases from 1.61 Å to 1.99 Å. There is no obvious bonding process between SF_6 and surface
- 9 atoms and the E_{ad} is -0.38 eV, which corresponds to physisorption.

10

Fig. 6 Adsorption configurations of SF_6 over the step-shape MgO (001) surface, in side view (left) and top view (right). Green, red, yellow and blue balls are Mg, O, S and F atoms, respectively: E_{ad}

- 13
- 14

15

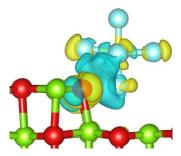
Table 4 Bader charge distribution of SF_6 over the step-shape MgO (001) surface. (Unit: eV)

= -0.38 eV.

	*	
Atom*	Gas phase	Step site
S	0.00	0.00
F-1	8.01	7.96
F-2	7.99	7.99
F-3	7.99	8.14
F-4	8.01	8.03
F-5	8.00	7.97
F-6	8.00	8.04
Sum	0	0.13

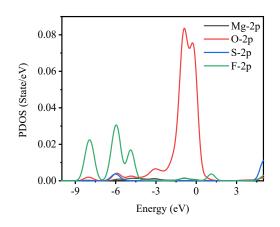
16 *Positive values indicate the gain of electrons. F atoms are labeled in Fig.6.

18 The Bader charge distribution is shown in Table 4. The SF_6 molecule gains 0.13 |e| at the step site


19 and the charge transfer mainly happens between SF_6 and the step O atoms, which is also proved by

- 20 the charge density difference in Fig.7. The projected density of state (PDOS) is analyzed to further
- study the orbital interactions between the SF_6 molecule and the step O atoms, as shown in Fig.8.
- 22 The PDOS results show that there is a small overlap between the F atoms and the step O atoms at

¹⁷


1 about -1 eV, which may correspond to a very weak orbital hybridization. Overall, SF₆ mainly

- 2 undergoes physisorption at the step site over the MgO (001) surface, with a weak charge transfer
- 3 process. The step-shape MgO (001) weakly activates SF₆, leading to a limited elongation of the S-
- 4 F bond and a change in S-F bond angles.
- 5

6

Fig.7 Differential charge distribution of SF₆ over the step-shape MgO (001) surface. The yellow
 region indicates an increase in charge density and the cyan region indicates a decrease.

9 10

11

Fig. 8 PDOS for SF₆ adsorption over step-shape MgO (001) surface

12 3.4 SF₆ adsorption over H-covered MgO (111) surfaces

13 As previously mentioned, the terminated MgO surfaces should be carefully evaluated since the 14 hydration process may occur in SF_6 degradation with H_2O or H_2 addition. The hydroxylated MgO 15 (111) surfaces has been proven to be more stable than clean (100) surfaces [30]. Therefore, in this study, we chose the hydroxylated MgO (111) surface as a typical case to represent the possible 16 17 surface condition of MgO in thermal or NTP treatment and investigate its surface properties on SF₆ 18 adsorption. Two hydroxylated conditions are set, namely 0.5 ML and 1.0 ML coverage of H for the 19 MgO (111) surface, as shown in Fig. S3. The Ead and adsorption configurations are summarized in 20 Table 5, Fig.9 and Fig.10.

21 In Table 5, the E_{ad} of SF₆ in the 0.5 ML H-covered MgO (111) system is significantly lower than 22 in the 1.0 ML system. As shown in Fig.9, at each site, SF₆ undergoes physisorption over the 0.5 ML 23 surface without a surface binding process and E_{ad} is no more than 0.20 eV. By contrast, over the 1.0 24 ML H-covered (111) surface, SF_6 shows a significant deformation after the adsorption at the four 25 typical sites. The H site is the most stable site, at which SF₆ decomposes to SF₅ and F after the 26 adsorption, corresponding to E_{ad} of -4.22 eV. In Fig.10 (b), the detached F atom (F-5) is at the hollow 27 site. Similarly, SF₆ decomposes at the hollow site and the bridge site, corresponding to E_{ad} of -4.05 28 eV and -4.14 eV, respectively. However, at the Mg site, there is no obvious detachment of F in SF_6 ,

but an elongation of the bottom S-F bond from 1.61 Å to 2.07 Å is seen. The adsorption configurations in Fig.9 and Fig.10 show that the adsorption of SF_6 is much more stable at the 1.0

- 3 ML H-covered (111) surface.
- 4 5

6

Table 5 Adsorption energy of SF₆ over the O-terminated MgO (111) surface with 0.5 and 1.0 ML

H-coverage (Unit: eV)					
Adsorption site	0.5 ML	1.0 ML			
Н	-0.17	-4.22			
О	-0.04				
Mg		-3.13			
hollow	-0.20	-4.05			
bridge	-0.12	-4.14			

7

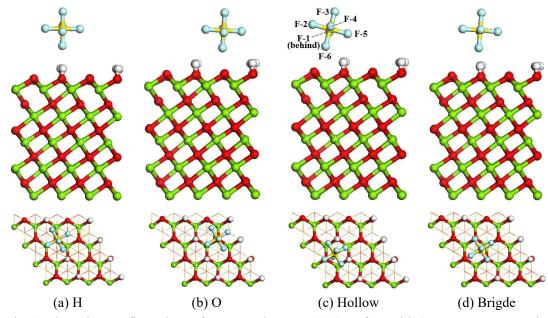
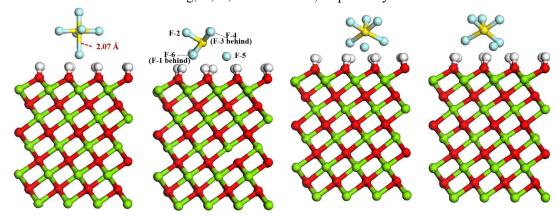
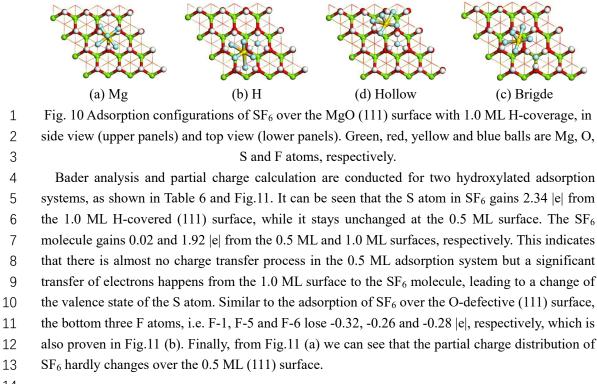




Fig. 9 Adsorption configurations of SF₆ over the MgO (111) surface with 0.5 ML H-coverage, in
side view (upper panels) and top view (lower panels). Green, red, white, yellow and blue balls are
Mg, O, H, S and F atoms, respectively.

14

16

18

Table 6 Bader charge distribution of SF_6 on the 0.5 ML and the 1.0 ML H-coverage MgO (111)

surface. (Unit: eV)					
Atom*	Gas phase	0.5 ML	1.0 ML		
Atom		Hollow site	H site		
S	0.00	0.00	2.34		
F-1	8.01	8.01	7.68		
F-2	7.99	7.98	8.07		
F-3	7.99	8.01	8.07		
F-4	8.01	8.00	8.00		
F-5	8.00	7.99	7.74		
F-6	8.00	8.03	7.72		
Sum	0	0.02	1.92		

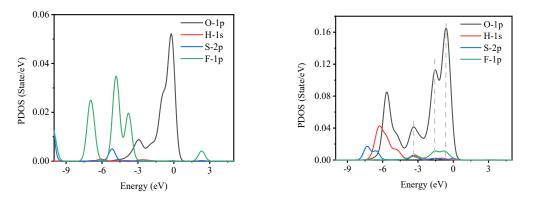
- 17 *Positive values indicate the gain of electrons. F atoms are labeled in Fig.9 and Fig.10.

(a) Hollow site with 0.5 ML H-coverage (b) H site with 1.0 ML H-coverage

19 Fig.11 Differential charge distribution of SF_6 at the H-covered MgO (111) surfaces. The yellow

- region indicates an increase in charge density and the cyan region indicates a decrease.
- 20 21

In order to further analyze the bonding properties of the SF₆ molecule and the surface atoms, PDOS analysis is carried out for two adsorption systems, as shown in Fig.12. The PDOS results of


PDOS analysis is carried out for two adsorption systems, as shown in Fig.12. The PDOS results of
 O correspond to the surface O atoms. In Fig.12 (a) of the 0.5 ML system, there is no obvious overlap

1 between the orbitals of the surface atoms and SF_6 . However, in Fig.12 (b) of the 1.0 ML system, the

- 2 F-1p overlaps with O-1p at around -1.7 eV and -0.8 eV. The S-2p and F-1p overlap with O-1p and
- 3 H-1s at around -3.3 eV. This corresponds to the orbital hybridization of SF_6 and the surface atoms,
- 4 which indicates that the detached and elongated F atoms from SF_6 show a chemical bonding process
- 5 with the surface atoms, accompanied with a charge transfer from the surface slab to the gas molecule.

6 In general, the 1.0 ML H-covered (111) surface shows significant surface properties for SF_6 7 adsorption and activation, which can promote the decomposition of SF_6 to stable adsorbates on its 8 surface. However, over the 0.5 ML surface, only physisorption of SF_6 occurs.

9 Overall, the adsorption performance of SF_6 over the MgO surface is largely determined by the surface properties. The crystal type, surface defect, crystal surface shape (step site) and the surface 10 11 hydroxylation are analyzed to be potential factors in affecting SF₆ adsorption and activation. Among 12 them, O vacancies and surface hydroxylation of O-terminated (111) surface can both lead to the 13 initial bond-breaking of SF₆ and the chemical adsorption of its decompositions, which could promote the degradation of SF_6 . It should be noted that in a plasma-catalysis system, the intensive 14 15 discharges generated at the gas-solid (catalyst) interface can significantly change the surface structure of the catalyst, leading to the formation of surface vacancies and the pre-adsorption of 16 17 plasma-generated species [10, 11]. Therefore, when packing the MgO into a plasma system for SF_6 18 degradation, the surface O vacancies and surface hydroxylation are likely to be formed by the 19 plasma discharge, especially with the addition of H₂O or H₂ gas. In this case, the adsorption and 20 activation of SF₆ could be promoted over the MgO packing surface to obtain a better degradation 21 performance. To fully understand the complete picture of SF₆ degradation in a MgO packed system, 22 in-situ characterization of the plasma-assisted abatement of SF₆ can be considered in the future, and 23 more detailed elementary reactions could be calculated when advanced product information is 24 known.

(a) Hollow site with 0.5 ML H-coverage
 (b) H site with 1.0 ML H-coverage
 Fig. 12 Project DOS for SF₆ adsorption over the H-covered MgO (111) surfaces

26 4 Conclusion

In this study, the interaction mechanism between SF_6 and MgO surfaces are investigated via DFT calculations. Our results show that the crystal surface type and the surface structures are of great importance in determining the surface properties on SF_6 adsorption and activation. Over perfect MgO (001) and (111) surfaces, SF_6 only undergoes physisorption without bonding. By contrast, SF_6 undergoes chemisorption over O-defective MgO (001) surface, with the highest E_{ad} to be -6.66 eV, and SF_6 decomposes to SF_5^* and F^* after adsorption. Besides, SF_6 undergoes adsorption at the O_v 1 site over the (111) surface with E_{ad} to be -0.58 eV, accompanied with an elongation of the bottom

- 2 S-F bond from 1.61 Å to 1.99 Å. Bader analysis shows that 1.95 |e| electrons are transferred from
- 3 the O-defective (001) surface to SF_6 , leading to a change of valence state of the S atom in SF_6 and
- 4 a weakening of the S-F bonds. In the O-defective (111) system, the total charge transfer is very
- 5 limited, but the bottom F atom loses 0.26 |e|, which is attributed to the S-F bond elongation.
- Besides, over the step-shape (001) surface, SF_6 shows physisorption at the stepsite with E_{ad} to be -0.38 eV. It is slightly activated as the S-F bond angles are changed and the bond lengths are elongated. A weak charge transfer process accompanied by a weak hybridization process occurs during the adsorption.
- 10 Moreover, as hydroxylated MgO (111) surface we considered two examples, i.e., a 0.5 ML and 11 1.0 ML H-covered O-terminated (111) surface. The results show that SF₆ can undergo chemisorption 12 on the 1.0 ML H-covered (111) surface, but physisorption on the 0.5 ML surface. On the 1.0 ML H-13 covered surface, the H site is the most stable site, corresponding to the highest E_{ad} of -4.22 eV, at 14 which 1.92 |e| is transferred from the MgO surface to SF₆ and a significant orbital interaction occurs 15 between SF₆ and the surface atoms. By contrast, there is almost no charge transfer or orbital
- 16 hybridization process in the 0.5 ML H-covered system.

Overall, our results prove that the MgO surface shows potential for SF₆ adsorption and activation when the surface is O defective or is hydroxylated. At these conditions, SF₆ can undergo selfdecomposition during the adsorption, accompanied with significant charge transfer and surface bonding. Therefore, when using a packed bed DBD with MgO packing in NTP-based degradation of SF₆, and the plasma affects the MgO surface, the latter can obtain catalytic properties for SF₆ degradation. Hence, our results can be useful to obtain more insight in the activation and initial degradation mechanisms of SF₆ in plasma-catalytic treatment with MgO packing.

24

25 ACKNOWLEDGMENT

This work is funded by National Natural Science Foundation of China (Grant. 52207155). The computational resources and services used in this work were provided by the HPC core facility CalcUA of the Universiteit Antwerpen, and VSC (Flemish Supercomputer Center), funded by the Research Foundation - Flanders (FWO) and the Flemish Government.

30 REFERENCES

- [1] Christophorou L G, Olthoff J K, Van Brunt R J. Sulfur hexafluoride and the electric power
 industry [J]. IEEE Electrical Insulation Magazine, 1997, 13(5): 20-24.
- Reilly J, Prinn R, Harnisch J, et al. Multi-gas assessment of the Kyoto Protocol [J]. Nature,
 1999, 401(6753): 549-555.
- [3] Dervos C T, Vassiliou P. Sulfur hexafluoride (SF₆): global environmental effects and toxic
 byproduct formation [J]. Journal of the Air & Waste Management Association, 2000, 50(1):
 137-141.
- [4] Kashiwagi D, Takai A, Takubo T, et al. Catalytic activity of rare earth phosphates for SF₆
 decomposition and promotion effects of rare earths added into AlPO₄[J]. Journal of colloid and
 interface science, 2009, 332(1): 136-144.
- [5] Zhang J, Zhou J Z, Liu Q, et al. Efficient removal of sulfur hexafluoride (SF₆) through reacting
 with recycled electroplating sludge [J]. Environmental science & technology, 2013, 47(12):
 6493-6499.
- 44 [6] Zhang X, Xiao H, Tang J, et al. Recent advances in decomposition of the most potent 45 greenhouse gas SF₆[J]. Critical Reviews in Environmental Science and Technology, 2017,

- 1 47(18): 1763-1782.
- [7] Lee H, Chang M, Wu K. Abatement of sulfur hexafluoride emissions from the semiconductor
 manufacturing process by atmospheric-pressure plasmas [J]. Journal of the Air & Waste
 Management Association, 2004, 54(8): 960-970.
- [8] Cui Z, Zhang X, Yuan T, et al. Plasma-assisted abatement of SF₆ in a dielectric barrier discharge
 reactor: investigation of the effect of packing materials[J]. Journal of Physics D: Applied
 Physics, 2019, 53(2): 025205.
- [9] Gutierrez Y, Giangregorio M M, Palumbo F, et al. Sustainable and Tunable Mg/MgO Plasmon Catalytic Platform for the Grand Challenge of SF₆ Environmental Remediation[J]. Nano
 Letters, 2020, 20(5): 3352-3360.
- [10] Bogaerts A, Tu X, Whitehead J C, et al. The 2020 plasma catalysis roadmap[J]. Journal of
 physics D: applied physics, 2020, 53(44): 443001.
- [11] Neyts E C, Ostrikov K, Sunkara M K, et al. Plasma catalysis: synergistic effects at the nanoscale[J]. Chemical reviews, 2015, 115(24): 13408-13446.
- [12] Zhang X, Cui Z, Li Y, et al. Abatement of SF₆ in the presence of NH₃ by dielectric barrier
 discharge plasma[J]. Journal of hazardous materials, 2018, 360: 341-348.
- [13] Zhang X, Yuan T, Cui Z, et al. Plasma-assisted abatement of SF₆ in a packed bed plasma reactor:
 understanding the effect of gas composition[J]. Plasma Science and Technology, 2020, 22(5):
 055502.
- [14] Finocchi F, Barbier A, Jupille J, et al. Stability of rocksalt (111) polar surfaces: Beyond the
 octopole[J]. Physical Review Letters, 2004, 92(13): 136101.
- [15] Cadigan C A, Corpuz A R, Lin F, et al. Nanoscale (111) faceted rock-salt metal oxides in catalysis[J]. Catalysis Science & Technology, 2013, 3(4): 900-911.
- [16] Gibson A, Haydock R, LaFemina J P. Electronic structure and relative stability of the MgO
 (001) and (111) surfaces[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces,
 and Films, 1992, 10(4): 2361-2366.
- [17] Zhang W B, Tang B Y. Stability of MgO (111) polar surface: Effect of the environment[J]. The
 Journal of Physical Chemistry C, 2008, 112(9): 3327-3333.
- [18] Hutter J, Iannuzzi M, Schiffmann F, et al. cp2k: atomistic simulations of condensed matter
 systems [J]. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2014, 4(1):
 15-25.
- [19] Perdew J, Burke K, Ernzerhof M. Generalized gradient approximation made simple [J].
 Physical review letters, 1996, 77(18): 3865.
- [20] Grimme S, Antony J, Ehrlich S, et al. A consistent and accurate ab initio parametrization of
 density functional dispersion correction (DFT-D) for the 94 elements H-Pu [J]. The Journal of
 chemical physics, 2010, 132(15): 154104.
- [21] Goedecker S, Teter M, Hutter J. Separable dual-space Gaussian pseudopotentials [J]. Physical
 Review B, 1996, 54(3): 1703.
- [22] VandeVondele J, Hutter J. Gaussian basis sets for accurate calculations on molecular systems
 in gas and condensed phases [J]. The Journal of chemical physics, 2007, 127(11): 114105.
- [23] Henkelman G, Arnaldsson A, Jónsson H. A fast and robust algorithm for Bader decomposition
 of charge density [J]. Computational Materials Science, 2006, 36(3): 354-360.
- 43 [24] Richter NA, Sicolo S, Levchenko S V, et al. Concentration of vacancies at metal-oxide surfaces:
 44 Case study of MgO (100)[J]. Physical review letters, 2013, 111(4): 045502.
- [25] Hao Y, Liu B, Tian L, et al. Synthesis of {111} facet-exposed MgO with surface oxygen vacancies for reactive oxygen species generation in the dark[J]. ACS applied materials & interfaces, 2017, 9(14): 12687-12693.
- [26] Wang H, Zhong C, Ma Q, et al. The adsorption and oxidation of SO₂ on MgO surface:
 experimental and DFT calculation studies[J]. Environmental Science: Nano, 2020, 7(4): 10921101.

- [27] Mutch G A, Shulda S, McCue A J, et al. Carbon capture by metal oxides: Unleashing the
 potential of the (111) facet[J]. Journal of the American Chemical Society, 2018, 140(13): 4736 4742.
- [28] Yang Z, Wu R, Zhang Q, et al. Adsorption of Au on an O-deficient MgO (001) surface[J].
 Physical Review B, 2002, 65(15): 155407.
- [29] Florez E, Fuentealba P, Mondragón F. Chemical reactivity of oxygen vacancies on the MgO
 surface: Reactions with CO₂, NO₂ and metals[J]. Catalysis today, 2008, 133: 216-222.
- [30] Wander A, Bush I J, Harrison N M. Stability of rocksalt polar surfaces: An ab initio study of
 MgO (111) and NiO (111)[J]. Physical Review B, 2003, 68(23): 233405.
- 10

Theoretical study of SF₆ adsorption and decomposition over

the MgO (001) and (111) surfaces

Zhaolun Cui^{a,b}, Yanpeng Hao^a*, Amin Jafarzade^b, Shangkun L^b, Annemie Bogaerts^b, Licheng Li^a

^aSchool of Electric Power Engineering, South China University of Technology, Guangzhou 510630, China

^bResearch group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, BE-2610 Wilrijk-Antwerp, Belgium

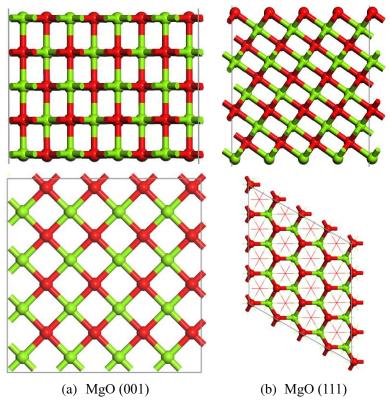


Fig.S1 Bulk models of the perfect MgO (001) (a) and O-terminated (111) (b) slabs, in side view (upper panels) and top view (lower panels). Green and red balls are Mg and O atoms, respectively.



Fig.S2 Bulk models of the MgO (001) (a) and O-terminated (111) slabs (b) with one O vacancy (O_v), in side view (upper panels) and top view (lower panels). Green and red balls are Mg and O atoms, respectively.

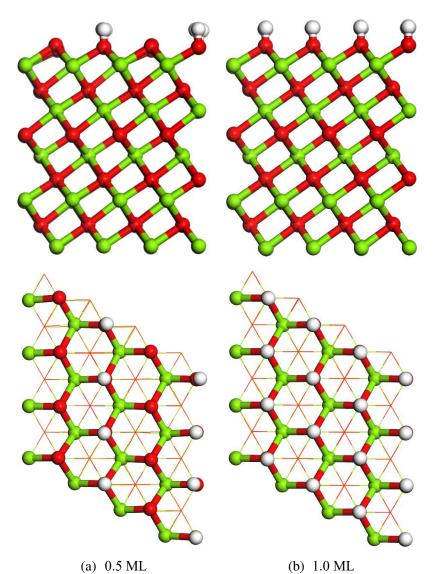


Fig.S3 Bulk models of the O-terminated (111) slabs with 0.5 (a) and 1.0 ML (b) H-coverage, in side view (upper panels) and top view (lower panels). Green, red and white balls are Mg, O and H atoms, respectively.