|
Record |
Links |
|
Author |
Ghimire, B.; Szili, E.J.; Lamichhane, P.; Short, R.D.; Lim, J.S.; Attri, P.; Masur, K.; Weltmann, K.-D.; Hong, S.-H.; Choi, E.H. |
|
|
Title |
The role of UV photolysis and molecular transport in the generation of reactive species in a tissue model with a cold atmospheric pressure plasma jet |
Type |
A1 Journal article |
|
Year |
2019 |
Publication |
Applied physics letters |
Abbreviated Journal |
Appl Phys Lett |
|
|
Volume |
114 |
Issue |
9 |
Pages |
093701 |
|
|
Keywords |
A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT) |
|
|
Abstract |
Cold atmospheric pressure plasma jets (plasma) operated in ambient air provide a rich source of reactive oxygen and nitrogen species (RONS), which are known to influence biological processes important in disease. In the plasma treatment of diseased tissue such as subcutaneous cancer tumors, plasma RONS need to first traverse an interface between the plasma-skin surface and second be transported to millimeter depths in order to reach deep-seated diseased cells. However, the mechanisms in the plasma generation of RONS within soft tissues are not understood. In this study, we track the plasma jet delivery of RONS into a tissue model target and we delineate two processes: through target delivery of RONS generated (primarily) in the plasma jet and in situ RONS generation by UV photolysis within the target. We demonstrate that UV photolysis promotes the rapid generation of RONS in the tissue model target’s surface after which the RONS are transported to millimeter depths via a slower molecular process. Our results imply that the flux of UV photons from plasma jets is important for delivering RONS through seemingly impenetrable barriers such as skin. The findings have implications not only in treatments of living tissues but also in the functionalization of soft hydrated biomaterials such as hydrogels and extracellular matrix derived tissue scaffolds. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000460820600048 |
Publication Date |
2019-03-04 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0003-6951 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
3.411 |
Times cited |
12 |
Open Access |
Not_Open_Access |
|
|
Notes |
National Research Foundation of Korea, NRF-2016K1A4A3914113 ; Australian Research Council, DP16010498 ; This work was supported by the National Research Foundation of Korea (NRF) Grant No. NRF-2016K1A4A3914113 and in part by Kwangwoon University 2018, Korea. E.J.S., S.-H.H., and R.D.S. wish to thank the Australian Research Council for partially supporting this research through Discovery Project No. DP16010498 and UniSA through the Vice Chancellor Development Fund. |
Approved |
Most recent IF: 3.411 |
|
|
Call Number |
PLASMANT @ plasmant @UA @ admin @ c:irua:158111 |
Serial |
5159 |
|
Permanent link to this record |