|
Record |
Links |
|
Author |
Ivanov, V.; Paunska, T.; Lazarova, S.; Bogaerts, A.; Kolev, S. |
|
|
Title |
Gliding arc/glow discharge for CO2 conversion: Comparing the performance of different discharge configurations |
Type |
A1 Journal Article;CO2 conversion |
|
Year |
2023 |
Publication |
Journal of CO2 Utilization |
Abbreviated Journal |
|
|
|
Volume |
67 |
Issue |
|
Pages |
102300 |
|
|
Keywords |
A1 Journal Article;CO2 conversion; CO2 dissociation; Low current gliding arc; Magnetic stabilization; Magnetically stabilized discharge; Gliding glow discharge; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ; |
|
|
Abstract |
We studied the use of low current (hundreds of milliamperes) gliding arc/glow discharges for CO2 dissociation, at atmospheric pressure, in three different configurations. All of these are based on the gliding arc design with flat diverging electrodes. The discharge is mainly in the normal glow regime with contracted positive column. The CO2 gas is injected from a nozzle, at the closest separation between the electrodes. A pair of quartz glasses is placed on both sides of the electrodes, so that the gas flow is restricted to the active plasma area, between the electrodes. For two of the tested configurations, an external magnetic field was applied, to create a magnetic force, both in the direction of the gas flow, and opposite to the gas flow. In the first case, the arc is accelerated, shortening the period between ignition and extinction, while in the second case, it is stabilized (magneticallystabilized). We studied two quantities, namely the CO2 conversion and the energy efficiency of the conversion. Generally, the CO2 conversion decreases with increasing flow rate and increases with power. The energy efficiency increases with the flow rate, for all configurations. The magnetically-stabilized configuration is more stable and efficient at low gas flow rates, but has poor performance at high flow rates, while the non-stabilized configurations exhibit good conversion for a larger range of flow rates, but they are generally more unstable and less efficient. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000891249700001 |
Publication Date |
0000-00-00 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2212-9820 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
7.7 |
Times cited |
|
Open Access |
Not_Open_Access |
|
|
Notes |
This work was supported by the Bulgarian National Science Fund, Ministry of Education and Science, research grant KP-06-OPR 04/4 from 14.12.2018 and by the European Regional Development Fund within the Operational Programme “Science and Education for Smart Growth 2014 – 2020″ under the Project CoE “National center of mechatronics and clean technologies” BG05M2OP001-1.001-0008. |
Approved |
Most recent IF: 7.7; 2023 IF: 4.292 |
|
|
Call Number |
PLASMANT @ plasmant @c:irua:191816 |
Serial |
7117 |
|
Permanent link to this record |