|
Record |
Links |
|
Author |
Verheyen, C.; Silva, T.; Guerra, V.; Bogaerts, A. |
|
|
Title |
The effect of H2O on the vibrational populations of CO2in a CO2/H2O microwave plasma: a kinetic modelling investigation |
Type |
A1 Journal article |
|
Year |
2020 |
Publication |
Plasma Sources Science & Technology |
Abbreviated Journal |
Plasma Sources Sci T |
|
|
Volume |
29 |
Issue |
9 |
Pages |
095009 |
|
|
Keywords |
A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT) |
|
|
Abstract |
Plasma has been studied for several years to convert CO2 into value-added products. If CO2 could be converted in the presence of H2O as a cheap H-source for making syngas and oxygenates, it would mimic natural photosynthesis. However, CO2/H2O plasmas have not yet been extensively studied, not by experiments, and certainly not computationally. Therefore, we present here a kinetic modelling study to obtain a greater understanding of the vibrational kinetics of a CO2/H2O microwave plasma. For this purpose, we first created an electron impact cross section set for H2O, using a swarm-derived method. We added the new cross section set and CO2/H2O-related chemistry to a pure CO2 model. While it was expected that H2O addition mainly causes quenching of the CO2 asymmetric mode vibrational levels due to the additional CO2/H2O vibrational-translational relaxation, our model shows that the modifications in the vibrational kinetics are mainly induced by the strong electron dissociative attachment to H2O molecules, causing a reduction in electron density, and the corresponding changes in the input of energy into the CO2 vibrational levels by electron impact processes. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000570601300001 |
Publication Date |
2020-09-16 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1361-6595 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
3.8 |
Times cited |
|
Open Access |
|
|
|
Notes |
Fonds Wetenschappelijk Onderzoek, 1184820N ; Fundação para a Ciência e a Tecnologia, under projects UIDB/50010/2020 and ; This research was supported by FWO–PhD fellowshipaspirant, Grant 1184820N. VG and TS were partially supported by the Portuguese FCT, under projects UIDB/50010/2020 and UIDP/50010/2020 |
Approved |
Most recent IF: 3.8; 2020 IF: 3.302 |
|
|
Call Number |
PLASMANT @ plasmant @c:irua:172011 |
Serial |
6433 |
|
Permanent link to this record |