|
Record |
Links |
|
Author |
Vertongen, R.; Trenchev, G.; Van Loenhout, R.; Bogaerts, A. |
|
|
Title |
Enhancing CO2 conversion with plasma reactors in series and O2 removal |
Type |
A1 Journal article |
|
Year |
2022 |
Publication |
Journal Of Co2 Utilization |
Abbreviated Journal |
J Co2 Util |
|
|
Volume |
66 |
Issue |
|
Pages |
102252 |
|
|
Keywords |
A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT) |
|
|
Abstract |
In this work, we take a crucial step towards the industrial readiness of plasma-based CO2 conversion. We present a stepwise method to study plasma reactors in series as a first approach to a recycle flow. By means of this procedure, the CO2 conversion is enhanced by a factor of 3, demonstrating that a single-pass plasma treatment performs far below the optimal capacity of the reactor. Furthermore, we explore the effect of O2 in the mixture with our flexible procedure. Addition of O2 in the mixture has a clear detrimental effect on the conversion, in agreement with other experiments in atmospheric pressure plasmas. O2 removal is however highly beneficial, demonstrating a conversion per pass that is 1.6 times higher than the standard procedure. Indeed, extracting one of the products prevents recombination reactions. Based on these insights, we discuss opportunities for further improvements, especially in the field of specialised separation techniques. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000872550900003 |
Publication Date |
0000-00-00 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2212-9820 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
7.7 |
Times cited |
|
Open Access |
OpenAccess |
|
|
Notes |
We acknowledge financial support from the Fund for Scientific Research (FWO) Flanders (Grant ID 110221 N), the Flemish Agency for Innovation and Entrepreneurship (VLAIO) (Grant ID HBC.2021.0251), and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 810182 – SCOPE ERC Synergy project). We also thank L. Hollevoet, K. Rouwenhorst, F. Girard-Sahun, B. Wanten and I. Tsonev for the interesting discussions and practical help with the experiments. |
Approved |
Most recent IF: 7.7 |
|
|
Call Number |
PLASMANT @ plasmant @c:irua:191467 |
Serial |
7111 |
|
Permanent link to this record |