|
Record |
Links |
|
Author |
Trenchev, G.; Bogaerts, A. |
|
|
Title |
Dual-vortex plasmatron: A novel plasma source for CO2 conversion |
Type |
A1 Journal article |
|
Year |
2020 |
Publication |
Journal Of Co2 Utilization |
Abbreviated Journal |
J Co2 Util |
|
|
Volume |
39 |
Issue |
|
Pages |
101152 |
|
|
Keywords |
A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT) |
|
|
Abstract |
Atmospheric pressure gliding arc (GA) discharges are gaining increasing interest for CO2 conversion and other gas conversion applications, due to their simplicity and high energy efficiency. However, they are characterized by some drawbacks, such as non-uniform gas treatment, limiting the conversion, as well as the development of a hot cathode spot, resulting in severe electrode degradation. In this work, we built a dual-vortex plasmatron, which is a GA plasma reactor with innovative electrode configuration, to solve the above problems. The design aims to improve the CO2 conversion capability of the GA reactor by elongating the arc in two directions, to increase the residence time of the gas inside the arc, and to actively cool the cathode spot by rotation of the arc and gas convection. The measured CO2 conversion and corresponding energy efficiency indeed look very promising. In addition, we developed a fluid dynamics non-thermal plasma model with argon chemistry, to study the arc behavior in the reactor and to explain the experimental results. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000546648400008 |
Publication Date |
2020-03-20 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2212-9820 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
7.7 |
Times cited |
|
Open Access |
|
|
|
Notes |
Fund for Scientific Research – Flanders, G.0383.16N 11U53.16N ; Hercules Foundation, the Flemish Government; UAntwerpen; We acknowledge financial support from the Fund for Scientific Research – Flanders (FWO); grant numbers G.0383.16N and 11U53.16N. The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI), and the UAntwerpen. We would also like to thank G. Van Loon from the University of Antwerp for building the DVP reactor. |
Approved |
Most recent IF: 7.7; 2020 IF: 4.292 |
|
|
Call Number |
PLASMANT @ plasmant @c:irua:167593 |
Serial |
6356 |
|
Permanent link to this record |