toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Hollevoet, L.; Vervloessem, E.; Gorbanev, Y.; Nikiforov, A.; De Geyter, N.; Bogaerts, A.; Martens, J.A. pdf  url
doi  openurl
  Title Energy‐Efficient Small‐Scale Ammonia Synthesis Process with Plasma‐enabled Nitrogen Oxidation and Catalytic Reduction of Adsorbed NOx Type A1 Journal article
  Year 2022 Publication Chemsuschem Abbreviated Journal Chemsuschem  
  Volume Issue Pages  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Industrial ammonia production without CO2 emission and with low energy consumption is one of the technological grand challenges of this age. Current Haber-Bosch ammonia mass production processes work with a thermally activated iron catalyst needing high pressure. The need for large volumes of hydrogen gas and the continuous operation mode render electrification of Haber-Bosch plants difficult to achieve. Electrochemical solutions at low pressure and temperature are faced with the problematic inertness of the nitrogen molecule on electrodes. Direct reduction of N2 to ammonia is only possible with very reactive chemicals such as lithium metal, the regeneration of which is energy intensive. Here, the attractiveness of an oxidative route for N2 activation was presented. N2 conversion to NOx in a plasma reactor followed by reduction with H2 on a heterogeneous catalyst at low pressure could be an energy-efficient option for small-scale distributed ammonia production with renewable electricity and without intrinsic CO2 footprint.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000772893400001 Publication Date 2022-03-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1864-5631 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.4 Times cited (up) Open Access OpenAccess  
  Notes Vlaamse regering, HBC.2019.0108 ; Vlaamse regering; KU Leuven, C3/20/067 ; We gratefully acknowledge financial support by the Flemish Government through the Moonshot cSBO project P2C (HBC.2019.0108). J.A.M. and A.B. acknowledge the Flemish Government for long-term structural funding (Methusalem). J.A.M. © 2022 Wiley-VCH GmbH Approved Most recent IF: 8.4  
  Call Number PLASMANT @ plasmant @c:irua:187251 Serial 7054  
Permanent link to this record
 

 
Author Van Alphen, S.; Ahmadi Eshtehardi, H.; O'Modhrain, C.; Bogaerts, J.; Van Poyer, H.; Creel, J.; Delplancke, M.-P.; Snyders, R.; Bogaerts, A. pdf  url
doi  openurl
  Title Effusion nozzle for energy-efficient NOx production in a rotating gliding arc plasma reactor Type A1 Journal article
  Year 2022 Publication Chemical Engineering Journal Abbreviated Journal Chem Eng J  
  Volume 443 Issue Pages 136529  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma-based NOx production is of interest for sustainable N2 fixation, but more research is needed to improve its performance. One of the current limitations is recombination of NO back into N2 and O2 molecules immediately after the plasma reactor. Therefore, we developed a novel so-called “effusion nozzle”, to improve the perfor­mance of a rotating gliding arc plasma reactor for NOx production, but the same principle can also be applied to other plasma types. Experiments in a wide range of applied power, gas flow rates and N2/O2 ratios demonstrate an enhancement in NOx concentration by about 8%, and a reduction in energy cost by 22.5%. In absolute terms, we obtain NOx concentrations up to 5.9%, at an energy cost down to 2.1 MJ/mol, which are the best values reported to date in literature. In addition, we developed four complementary models to describe the gas flow, plasma temperature and plasma chemistry, aiming to reveal why the effusion nozzle yields better performance. Our simulations reveal that the effusion nozzle acts as very efficient heat sink, causing a fast drop in gas tem­perature when the gas molecules leave the plasma, hence limiting the recombination of NO back into N2 and O2. This yields an overall higher NOx concentration than without the effusion nozzle. This immediate quenching right at the end of the plasma makes our effusion nozzle superior to more conventional cooling options, like water cooling In addition, this higher NOx concentration can be obtained at a slightly lower power, because the effusion nozzle allows for the ignition and sustainment of the plasma at somewhat lower power. Hence, this also explains the lower energy cost. Overall, our experimental results and detailed modeling analysis will be useful to improve plasma-based NOx production in other plasma reactors as well.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000800010600003 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 15.1 Times cited (up) Open Access OpenAccess  
  Notes This research was supported by the Excellence of Science FWO-FNRS project (FWO grant ID GoF9618n, EOS ID 30505023), the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 810182 – SCOPE ERC Synergy project), and through long-term structural funding (Methusalem). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (depart­ment EWI) and the UAntwerpen. Approved Most recent IF: 15.1  
  Call Number PLASMANT @ plasmant @c:irua:188283 Serial 7057  
Permanent link to this record
 

 
Author Canossa, S.; Ferrari, E.; Sippel, P.; Fischer, J.K.H.; Pfattner, R.; Frison, R.; Masino, M.; Mas-Torrent, M.; Lunkenheimer, P.; Rovira, C.; Girlando, A. pdf  doi
openurl 
  Title Tetramethylbenzidine-TetrafluoroTCNQ (TMB-TCNQF(4)) : a narrow-gap semiconducting salt with room-temperature relaxor ferroelectric behavior Type A1 Journal article
  Year 2021 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C  
  Volume 125 Issue 46 Pages 25816-25824  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract We present an extension and revision of the spectroscopic and structural data of the mixed-stack charge-transfer (CT) crystal 3,3 ',5,5 '-tetramethylbenzidine-tetrafluorotetracyano-quinodimethane (TMB-TCNQF4), associated with new electric and dielectric measurements. Refinement of synchrotron structural data at low temperature has led to revise the previously reported C2/m structure. The revised structure is P2(1)/m, with two dimerized stacks per unit cell, and is consistent with the low temperature vibrational data. However, polarized Raman data in the low-frequency region also indicate that by increasing temperature above 200 K, the structure presents an increasing degree of disorder, mainly along the stack axis. X-ray diffraction data at room temperature have confirmed that the correct structure is P2(1)/ m -no phase transitions -but did not allow substantiating the presence of disorder. On the other hand, dielectric measurements have evidenced a typical relaxor ferroelectric behavior already at room temperature, with a peak in the real part of dielectric constant epsilon'(T,v) around 200 K and 0.1 Hz. The relaxor behavior is explained in terms of the presence of spin solitons separating domains of opposite polarity that yield to ferroelectric nanodomains. TMB-TCNQF(4) is confirmed to be a narrow-gap band semiconductor (Ea similar to 0.3 eV) with a room-temperature conductivity of similar to 10(-4) Omega(-1) cm(-1).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000731170500008 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited (up) Open Access Not_Open_Access  
  Notes A.G. thanks Prof. Pascale Foury-Leylekian for very helpful discussions about the crystallographic issues. R.F. thanks Prof. Anthony Linden for his help in the X-ray diffraction data collection. J.K.H.F. and P.L. acknowledge funding from the Deutsche Forschungsgemeinschaft (DFG) via the Transregional Collaborative Research Center TRR80 (Augsburg, Munich). R.P. and M.M.-T. acknowledge support from the Marie Curie Cofund, Beatriu de Pinós Fellowships (Grant nos. AGAUR 2017 BP 00064). This work was also supported by the Spanish Ministry project GENESIS PID2019-111682RBI00, the “Severo Ochoa” Programme for Centers of Excellence in R&D (FUNFUTURE, CEX2019-000917-S), and the Generalitat de Catalunya (2017-SGR-918). The Elettra Synchrotron (CNR Trieste) is acknowledged for granting the beamtime at the single-crystal diffraction beamline XRD1 (Proposal ID 20185483). In Parma, the work has benefited from the equipment and support of the COMP-HUB Initiative, funded by the “Departments of Excellence” program of the Approved Most recent IF: 4.536  
  Call Number UA @ admin @ c:irua:184866 Serial 7066  
Permanent link to this record
 

 
Author Wang, Y.; Chen, Y.; Harding, J.; He, H.; Bogaerts, A.; Tu, X. pdf  url
doi  openurl
  Title Catalyst-free single-step plasma reforming of CH4 and CO2 to higher value oxygenates under ambient conditions Type A1 Journal article
  Year 2022 Publication Chemical Engineering Journal Abbreviated Journal Chem Eng J  
  Volume 450 Issue Pages 137860  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Direct conversion of CH4 and CO2 to liquid fuels and chemicals under mild conditions is appealing for biogas conversion and utilization but challenging due to the inert nature of both gases. Herein, we report a promising plasma process for the catalyst-free single-step conversion of CH4 and CO2 into higher value oxygenates (i.e., methanol, acetic acid, ethanol, and acetone) at ambient pressure and room temperature using a water-cooled dielectric barrier discharge (DBD) reactor, with methanol being the main liquid product. The distribution of liquid products could be tailored by tuning the discharge power, reaction temperature and residence time. Lower discharge powers (10–15 W) and reaction temperatures (5–20 ◦ C) were favourable for the production of liquid products, achieving the highest methanol selectivity of 43% at 5 ◦ C and 15 W. A higher discharge power and reaction temperature, on the other hand, produced more gaseous products, particularly H2 (up to 26% selec­tivity) and CO (up to 33% selectivity). In addition, varying these process parameters (discharge power, reaction temperature and residence time) resulted in a simultaneous change in key discharge properties, such as mean electron energy (Ee), electron density (ne) and specific energy input (SEI), all of which are essential determiners of plasma chemical reactions. According to the results of artificial neural network (ANN) models, the relative importance of these process parameters and key discharge indicators on reaction performance follows the order: discharge power > reaction temperature > residence time, and SEI > ne > Ee, respectively. This work provides new insights into the contributions and tuning mechanism of multiple parameters for optimizing the reaction performance (e.g., liquid production) in the plasma gas conversion process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000830813300004 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 15.1 Times cited (up) Open Access OpenAccess  
  Notes This project received funding from the European Union’s Horizon 2020 research and innovation program under the Marie SklodowskaCurie grant agreement No. 813393. Approved Most recent IF: 15.1  
  Call Number PLASMANT @ plasmant @c:irua:189502 Serial 7100  
Permanent link to this record
 

 
Author Batuk, M.; Vandemeulebroucke, D.; Ceretti, M.; Paulus, W.; Hadermann, J. url  doi
openurl 
  Title Topotactic redox cycling in SrFeO2.5+δ explored by 3D electron diffraction in different gas atmospheres Type A1 Journal article
  Year 2022 Publication Journal of materials chemistry A : materials for energy and sustainability Abbreviated Journal J Mater Chem A  
  Volume Issue Pages  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract For oxygen conducting materials applied in solid oxide fuel cells and chemical-looping processes, the understanding of the oxygen diffusion mechanism and the materials’ crystal structure at different stages of the redox reactions is a key parameter to control their performance. In this paper we report the first ever in situ 3D ED experiment in a gas environment and with it uncover the structure evolution of SrFeO2.5 as notably different from that reported from in situ X-ray and in situ neutron powder diffraction studies in gas environments. Using in situ 3D ED on submicron sized single crystals obtained from a high quality monodomain SrFeO2.5 single crystal , we observe the transformation under O2 flow of SrFeO2.5 with an intra- and interlayer ordering of the left and right twisted (FeO4) tetrahedral chains (space group Pcmb) into consecutively SrFeO2.75 with space group Cmmm (at 350°C, 33% O2) and SrFeO3-δ with space group Pm3 ̅m (at 400°C, 100% O2). Upon reduction in H2 flow, the crystals return to the brownmillerite structure with intralayer order, but without regaining the interlayer order of the pristine crystals. Therefore, redox cycling of SrFeO2.5 crystals in O2 and H2 introduces stacking faults into the structure, resulting in an I2/m(0βγ)0s symmetry with variable β.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000891928400001 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7488 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.9 Times cited (up) Open Access OpenAccess  
  Notes Financial support is acknowledged from the FWO-Hercules fund I003218N ‘Infrastructure for imaging nanoscale processes in gas/vapor or liquid environments’, from the University of Antwerp through grant BOF TOP 38689. This work was supported by the European Commission Horizon 2020 NanED grant number 956099. Financial support from the French National Research Agency (ANR) through the project “Structural induced Electronic Complexity controlled by low temperature Topotactic Reaction” (SECTOR No. ANR-14-CE36- 0006-01) is gratefully acknowledged. Approved Most recent IF: 11.9  
  Call Number EMAT @ emat @c:irua:192325 Serial 7229  
Permanent link to this record
 

 
Author Andersen, Ja.; Holm, Mc.; van 't Veer, K.; Christensen, Jm.; Østberg, M.; Bogaerts, A.; Jensen, Ad. url  doi
openurl 
  Title Plasma-catalytic ammonia synthesis in a dielectric barrier discharge reactor: A combined experimental study and kinetic modeling Type A1 Journal article
  Year 2023 Publication Chemical engineering journal Abbreviated Journal  
  Volume 457 Issue Pages 141294  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma-catalytic ammonia synthesis in a dielectric barrier discharge reactor has emerged as a possible route for electrification of nitrogen fixation. In this study, we use a combination of experiments and a plasma kinetic model to investigate the ammonia synthesis from N2 and H2, both with and without a solid packing material in the plasma zone. The effect of plasma power, feed flow rate, N2:H2 feed ratio, gas residence time, temperature, and packing material (MgAl2O4 alone or impregnated with Co or Ru) on the ammonia synthesis rate were examined in the experiments. The kinetic model was employed to improve our understanding of the ammonia formation pathways and identify possible changes in these pathways when altering the N2:H2 feed ratio. A higher NH3 synthesis rate was achieved when increasing the feed flow rate, as well as when increasing the gas tem-perature from 100 to 200 ◦C when a packing material was present in the plasma. At the elevated temperature of 200 ◦C, an optimum in the NH3 synthesis rate was observed at an equimolar feed ratio (N2:H2 =1:1) for the plasma alone and MgAl2O4, while a N2-rich feed was favored for Ru/MgAl2O4 and Co/MgAl2O4. The optimum in the synthesis rate with the N2-rich feed, where high energy electrons are more likely to collide with N2, suggests that the rate-limiting step is the dissociation of N2 in the gas phase. This is supported by the kinetic model when packing material was used. However, for the plasma alone, the model found that the N2 dissociation is only rate limiting in H2-rich feeds, whereas the limited access to H in N2-rich feeds makes the hydrogenation of N species limiting.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001058978000001 Publication Date 2023-01-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 15.1 Times cited (up) Open Access OpenAccess  
  Notes We thank Topsoe A/S for providing the catalytic materials used in the study, the research group PLASMANT (University of Antwerp) for sharing their plasma kinetic model and allocating time on their cluster for the calculations, and the Department of Chemical and Biochemical Engineering (Technical University of Denmark) for funding the project. Approved Most recent IF: 15.1; 2023 IF: 6.216  
  Call Number PLASMANT @ plasmant @c:irua:195877 Serial 7234  
Permanent link to this record
 

 
Author Andersen, Ja.; van 't Veer, K.; Christensen, Jm.; Østberg, M.; Bogaerts, A.; Jensen, Ad. url  doi
openurl 
  Title Ammonia decomposition in a dielectric barrier discharge plasma: Insights from experiments and kinetic modeling Type A1 Journal article
  Year 2023 Publication Chemical engineering science Abbreviated Journal  
  Volume 271 Issue Pages 118550  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Utilizing ammonia as a storage medium for hydrogen is currently receiving increased attention. A possible method to retrieve the hydrogen is by plasma-catalytic decomposition. In this work, we combined an experimental study, using a dielectric barrier discharge plasma reactor, with a plasma kinetic model, to get insights into the decomposition mechanism. The experimental results revealed a similar effect on the ammonia conversion when changing the flow rate and power, where increasing the specific energy input (higher power or lower flow rate) gave an increased conversion. A conversion as high as 82 % was achieved at a specific energy input of 18 kJ/Nl. Furthermore, when changing the discharge volume from 31 to 10 cm3, a change in the plasma distribution factor from 0.2 to 0.1 was needed in the model to best describe the conversions of the experiments. This means that a smaller plasma volume caused a higher transfer of energy through micro-discharges (non-uniform plasma), which was found to promote the decomposition of ammonia. These results indicate that it is the collisions between NH3 and the high-energy electrons that initiate the decomposition. Moreover, the rate of ammonia destruction was found by the model to be in the order of 1022 molecules/(cm3 s) during the micro-discharges, which is 5 to 6 orders of magnitude higher than in the afterglows. A considerable re-formation of ammonia was found to take place in the afterglows, limiting the overall conversion. In addition, the model revealed that implementation of packing material in the plasma introduced high concentrations of surface-bound hydrogen atoms, which introduced an additional ammonia re-formation pathway through an Eley-Rideal reaction with gas phase NH2. Furthermore, a more uniform plasma is predicted in the presence of MgAl2O4, which leads to a lower average electron energy during micro-discharges and a lower conversion (37 %) at a comparable residence time for the plasma alone (51 %).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000946293200001 Publication Date 2023-02-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0009-2509 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.7 Times cited (up) Open Access OpenAccess  
  Notes We thank Topsoe A/S for providing the packing material used, the research group PLASMANT (UAntwerpen) for sharing their plasma kinetic model and allowing us to perform the calculations on their clusters, and the Department of Chemical and Biochemical Engineering, Technical University of Denmark, for funding this project. Approved Most recent IF: 4.7; 2023 IF: 2.895  
  Call Number PLASMANT @ plasmant @c:irua:195204 Serial 7237  
Permanent link to this record
 

 
Author Tsonev, I.; O’Modhrain, C.; Bogaerts, A.; Gorbanev, Y. url  doi
openurl 
  Title Nitrogen Fixation by an Arc Plasma at Elevated Pressure to Increase the Energy Efficiency and Production Rate of NOx Type A1 Journal article
  Year 2023 Publication ACS Sustainable Chemistry and Engineering Abbreviated Journal  
  Volume 11 Issue 5 Pages 1888-1897  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma-based nitrogen fixation for fertilizer production is an attractive alternative to the fossil fuel-based industrial processes. However, many factors hinder its applicability, e.g., the commonly observed inverse correlation between energy consumption and production rates or the necessity to enhance the selectivity toward NO2, the desired product for a more facile formation of nitrate-based fertilizers. In this work, we investigated the use of a rotating gliding arc plasma for nitrogen fixation at elevated pressures (up to 3 barg), at different feed gas flow rates and composition. Our results demonstrate a dramatic increase in the amount of NOx produced as a function of increasing pressure, with a record-low EC of 1.8 MJ/(mol N) while yielding a high production rate of 69 g/h and a high selectivity (94%) of NO2. We ascribe this improvement to the enhanced thermal Zeldovich mechanism and an increased rate of NO oxidation compared to the back reaction of NO with atomic oxygen, due to the elevated pressure.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000924366700001 Publication Date 2023-02-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2168-0485 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.4 Times cited (up) Open Access OpenAccess  
  Notes Fonds Wetenschappelijk Onderzoek, G0G2322N ; Horizon 2020 Framework Programme, 965546 ; Approved Most recent IF: 8.4; 2023 IF: 5.951  
  Call Number PLASMANT @ plasmant @c:irua:194281 Serial 7239  
Permanent link to this record
 

 
Author Eshtehardi, H.A.; van 't Veer, K.; Delplancke, M.-P.; Reniers, F.; Bogaerts, A. pdf  url
doi  openurl
  Title Postplasma Catalytic Model for NO Production: Revealing the Underlying Mechanisms to Improve the Process Efficiency Type A1 Journal article
  Year 2023 Publication ACS Sustainable Chemistry and Engineering Abbreviated Journal  
  Volume 11 Issue 5 Pages 1720-1733  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma catalysis is emerging for plasma-assisted gas conversion processes. However, the underlying mechanisms of plasma catalysis are poorly understood. In this work, we present a 1D heterogeneous catalysis model with axial dispersion (i.e., accounting for back-mixing and molecular diffusion of fluid elements in the process stream in the axial direction), for plasma-catalytic NO production from N2/O2 mixtures. We investigate the concentration and reaction rates of each species formed as a function of time and position across the catalyst, in order to determine the underlying mechanisms. To obtain insights into how the performance of the process can be further improved, we also study how changes in the postplasma gas flow composition entering the catalyst bed and in the operation conditions of the catalytic stage affect the performance of NO production.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000926412800001 Publication Date 2023-02-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2168-0485 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 8.4 Times cited (up) Open Access OpenAccess  
  Notes Fonds Wetenschappelijk Onderzoek, 30505023 GoF9618n ; Fonds De La Recherche Scientifique FNRS, 30505023 GoF9618n ; H2020 European Research Council, 810182 ; Approved Most recent IF: 8.4; 2023 IF: 5.951  
  Call Number PLASMANT @ plasmant @c:irua:195377 Serial 7241  
Permanent link to this record
 

 
Author Kelly, S.; Verheyen, C.; Cowley, A.; Bogaerts, A. pdf  url
doi  openurl
  Title Producing oxygen and fertilizer with the Martian atmosphere by using microwave plasma Type A1 Journal article
  Year 2022 Publication Chem Abbreviated Journal Chem  
  Volume 8 Issue 10 Pages 2797-2816  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We explorethepotentialofmicrowave(MW)-plasma-based in situ

utilizationoftheMartianatmospherewithafocusonthenovelpos-

sibilityoffixingN2 forfertilizerproduction. Conversioninasimulant

plasma (i.e., 96% CO2, 2% N2, and 2% Ar),performedunderen-

ergyconditionssimilartothoseoftheMarsOxygen In Situ Resource

UtilizationExperiment(MOXIE),currentlyonboardNASA’sPerse-

verancerover,demonstratesthatO/O2 formedthroughCO2 dissociation

facilitatesthefixationoftheN2 fractionviaoxidationtoNOx.

PromisingproductionratesforO2, CO,andNOx of 47.0,76.1,and

1.25g/h,respectively,arerecordedwithcorrespondingenergy

costs of0.021,0.013,and0.79kWh/g,respectively.Notably,O2

productionratesare 30 timeshigherthanthosedemonstrated

by MOXIE,whiletheNOx production raterepresentsan 7% fixa-

tionoftheN2 fraction presentintheMartian atmosphere.MW-

plasma-basedconversionthereforeshowsgreatpotentialasan in

situ resourceutilization(ISRU)technologyonMarsinthatitsimulta-

neouslyfixesN2 and producesO2.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000875346600005 Publication Date 2022-08-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2451-9294 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 23.5 Times cited (up) Open Access OpenAccess  
  Notes the Euro- pean Marie Skłodowska-Curie Individual Fellowship ‘‘PENFIX’’ within Horizon 2020 (grant no. 838181), the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Program (grant no. 810182; SCOPE ERC Synergy project), and the Excellence of Science FWO-FNRS project (FWO grant no. GoF9618n and EOS no. 30505023). C.V. was supported by a FWO aspirant PhD fellowship (grant no. 1184820N). The calculations were per- formed with the Turing HPC infrastructure at the CalcUA core facility of the Univer- siteit Antwerpen (Uantwerpen), a division of the Flemish Supercomputer Centre VSC, funded by the Hercules Foundation, the Flemish government (department EWI), and Uantwerpen. Approved Most recent IF: 23.5  
  Call Number PLASMANT @ plasmant @c:irua:192174 Serial 7243  
Permanent link to this record
 

 
Author Morais, E.; Delikonstantis, E.; Scapinello, M.; Smith, G.; Stefanidis, G.D.; Bogaerts, A. pdf  url
doi  openurl
  Title Methane coupling in nanosecond pulsed plasmas: Correlation between temperature and pressure and effects on product selectivity Type A1 Journal article
  Year 2023 Publication Chemical engineering journal Abbreviated Journal  
  Volume 462 Issue Pages 142227  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We present a zero-dimensional kinetic model to characterise specifically the gas-phase dynamics of methane

conversion in a nanosecond pulsed discharge (NPD) plasma reactor. The model includes a systematic approach to

capture the nanoscale power discharges and the rapid ensuing changes in electric field, gas and electron temperature,

as well as species densities. The effects of gas temperature and reactor pressure on gas conversion and

product selectivity are extensively investigated and validated against experimental work. We discuss the

important reaction pathways and provide an analysis of the dynamics of the heating and cooling mechanisms. H

radicals are found to be the most populous plasma species and they participate in hydrogenation and dehydrogenation

reactions, which are the dominant recombination reactions leading to C2H4 and C2H2 as main

products (depending on the pressure).
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000983631500001 Publication Date 2023-03-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 15.1 Times cited (up) Open Access OpenAccess  
  Notes We gratefully acknowledge financial support by the Flemish Government through the Moonshot cSBO project “Power-to-Olefins” (P2O; HBC.2020.2620). Approved Most recent IF: 15.1; 2023 IF: 6.216  
  Call Number PLASMANT @ plasmant @c:irua:195881 Serial 7246  
Permanent link to this record
 

 
Author Daele, K.V.; Arenas‐Esteban, D.; Choukroun, D.; Hoekx, S.; Rossen, A.; Daems, N.; Pant, D.; Bals, S.; Breugelmans, T. url  doi
openurl 
  Title Enhanced Pomegranate‐Structured SnO2Electrocatalysts for the Electrochemical CO2Reduction to Formate Type A1 Journal article
  Year 2023 Publication ChemElectroChem Abbreviated Journal  
  Volume Issue Pages  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract Although most state-of-the-art Sn-based electrocatalysts yield promising results in terms of selectivity and catalyst activity, their stability remains insufficient to date. Here, we demonstrate the successful application of the recently developed pomegranate-structured SnO2 (Pom. SnO2) and SnO2@C (Pom. SnO2@C) nanocomposite electrocatalysts for the efficient electrochemical conversion of CO2 to formate. With an initial selectivity of 83 and 86% towards formate and an operating potential of -0.72 V and -0.64 V vs. RHE, respectively, these pomegranate SnO2 electrocatalysts are able to compete with most of the current state-of-the-art Sn-based electrocatalysts in terms of activity and selectivity. Given the importance of electrocatalyst stability, long-term experiments (24 h) were performed and a temporary loss in selectivity for the Pom. SnO2@C electrocatalyst was largely restored to its initial selectivity upon drying and exposure to air. Of all the used (24 h) electrocatalysts, the pomegranate SnO2@C had the highest selectivity over a time period of one hour, reaching an average recovered FE of 85%, while the commercial SnO2 and bare pomegranate SnO2 electrocatalysts reached an average of 79 and 80% FE towards formate, respectively. Furthermore, the pomegranate structure of Pom. SnO2@C was largely preserved due to the presence of the heterogeneous carbon shell, which acts as a protective layer, physically inhibiting particle segregation/pulverisation and agglomeration.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000936694800001 Publication Date 2023-02-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2196-0216 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 4 Times cited (up) Open Access OpenAccess  
  Notes European Regional Development Fund, E2C 2S03-019 ; Approved Most recent IF: 4; 2023 IF: 4.136  
  Call Number EMAT @ emat @c:irua:195228 Serial 7249  
Permanent link to this record
 

 
Author Van Alphen, S.; Hecimovic, A.; Kiefer, C.K.; Fantz, U.; Snyders, R.; Bogaerts, A. pdf  url
doi  openurl
  Title Modelling post-plasma quenching nozzles for improving the performance of CO2 microwave plasmas Type A1 Journal article
  Year 2023 Publication Chemical engineering journal Abbreviated Journal  
  Volume 462 Issue Pages 142217  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Given the ecological problems associated to the CO2 emissions of fossil fuels, plasma technology has gained

interest for conversion of CO2 into value-added products. Microwave plasmas operating at atmospheric pressure

have proven to be especially interesting, due to the high gas temperatures inside the reactor (i.e. up to 6000 K)

allowing for efficient thermal dissociation of CO2 into CO and O2. However, the performance of these high

temperature plasmas is limited by recombination of CO back into CO2 once the gas cools down in the afterglow.

In this work, we computationally investigated several quenching nozzles, developed and experimentally tested

by Hecimovic et al., [1] for their ability to quickly cool the gas after the plasma, thereby quenching the CO

recombination reactions. Using a 3D computational fluid dynamics model and a quasi-1D chemical kinetics

model, we reveal that a reactor without nozzle lacks gas mixing between hot gas in the center and cold gas near

the reactor walls. Especially at low flow rates, where there is an inherent lack of convective cooling due to the

low gas flow velocity, the temperature in the afterglow remains high (between 2000 and 3000 K) for a relatively

long time (in the 0.1 s range). As shown by our quasi-1D chemical kinetics model, this results in a important loss

of CO due to recombination reactions. Attaching a nozzle in the effluent of the reactor induces fast gas quenching

right after the plasma. Indeed, it introduces (i) more convective cooling by forcing cool gas near the walls to mix

with hot gas in the center of the reactor, as well as (ii) more conductive cooling through the water-cooled walls of

the nozzle. Our model shows that gas quenching and the suppression of recombination reactions have more

impact at low flow rates, where recombination is the most limiting factor in the conversion process.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000962382600001 Publication Date 2023-03-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 15.1 Times cited (up) Open Access OpenAccess  
  Notes This research was supported by the Excellence of Science FWO-FNRS project (FWO grant ID GoF9618n, EOS ID 30505023), the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 810182 – SCOPE ERC Synergy project), and through long-term structural funding (Methusalem). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. Approved Most recent IF: 15.1; 2023 IF: 6.216  
  Call Number PLASMANT @ plasmant @c:irua:195889 Serial 7250  
Permanent link to this record
 

 
Author Liu, R.; Hao, Y.; Wang, T.; Wang, L.; Bogaerts, A.; Guo, H.; Yi, Y. pdf  url
doi  openurl
  Title Hybrid plasma-thermal system for methane conversion to ethylene and hydrogen Type A1 Journal article
  Year 2023 Publication Chemical engineering journal Abbreviated Journal  
  Volume 463 Issue Pages 142442  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract By combining dielectric barrier discharge plasma and external heating, we exploit a two-stage hybrid plasmathermal

system (HPTS), i.e., a plasma stage followed by a thermal stage, for direct non-oxidative coupling of

CH4 to C2H4 and H2, yielding a CH4 conversion of ca. 17 %. In the two-stage HPTS, the plasma first converts CH4

into C2H6 and C3H8, which in the thermal stage leads to a high C2H4 selectivity of ca. 63 % by pyrolysis, with H2

selectivity of ca. 64 %.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000953890500001 Publication Date 2023-03-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 15.1 Times cited (up) Open Access OpenAccess  
  Notes This work was supported by the National Natural Science Foundation of China [22272015, 21503032], the Fundamental Research Funds for the Central Universities of China [DUT21JC40]. Approved Most recent IF: 15.1; 2023 IF: 6.216  
  Call Number PLASMANT @ plasmant @c:irua:195888 Serial 7253  
Permanent link to this record
 

 
Author Vervloessem, E.; Gromov, M.; De Geyter, N.; Bogaerts, A.; Gorbanev, Y.; Nikiforov, A. pdf  url
doi  openurl
  Title NH3and HNOxFormation and Loss in Nitrogen Fixation from Air with Water Vapor by Nonequilibrium Plasma Type A1 Journal article
  Year 2023 Publication ACS Sustainable Chemistry and Engineering Abbreviated Journal  
  Volume 11 Issue 10 Pages 4289-4298  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The current global energy crisis indicated that increasing our

insight into nonfossil fuel nitrogen fixation pathways for synthetic fertilizer

production is more crucial than ever. Nonequilibrium plasma is a good candidate

because it can use N2 or air as a N source and water directly as a H source, instead

of H2 or fossil fuel (CH4). In this work, we investigate NH3 gas phase formation

pathways from humid N2 and especially humid air up to 2.4 mol % H2O (100%

relative humidity at 20 °C) by optical emission spectroscopy and Fouriertransform

infrared spectroscopy. We demonstrate that the nitrogen fixation

capacity is increased when water vapor is added, as this enables HNO2 and NH3

production in both N2 and air. However, we identified a significant loss

mechanism for NH3 and HNO2 that occurs in systems where these species are

synthesized simultaneously; i.e., downstream from the plasma, HNO2 reacts with NH3 to form NH4NO2, which rapidly decomposes

into N2 and H2O. We also discuss approaches to prevent this loss mechanism, as it reduces the effective nitrogen fixation when not

properly addressed and therefore should be considered in future works aimed at optimizing plasma-based N2 fixation. In-line removal

of HNO2 or direct solvation in liquid are two proposed strategies to suppress this loss mechanism. Indeed, using liquid H2O is

beneficial for accumulation of the N2 fixation products. Finally, in humid air, we also produce NH4NO3, from the reaction of HNO3

with NH3, which is of direct interest for fertilizer application.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000953337700001 Publication Date 2023-03-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2168-0485 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.4 Times cited (up) Open Access OpenAccess  
  Notes This research is supported by the Excellence of Science FWOFNRS project (NITROPLASM, FWO grant ID GoF9618n, EOS ID 30505023), the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant No. 810182 − SCOPE ERC Synergy project), and the Fund for Scientific Research (FWO) Flanders Bioeconomy project (grant No. G0G2322N), funded by the European Union-NextGenerationEU. Approved Most recent IF: 8.4; 2023 IF: 5.951  
  Call Number PLASMANT @ plasmant @c:irua:195878 Serial 7254  
Permanent link to this record
 

 
Author Eshtehardi, H.A.; Van ‘t Veer, K.; Delplancke, M.-P.; Reniers, F.; Bogaerts, A. pdf  url
doi  openurl
  Title Postplasma Catalytic Model for NO Production: Revealing the Underlying Mechanisms to Improve the Process Efficiency Type A1 Journal article
  Year 2023 Publication ACS Sustainable Chemistry and Engineering Abbreviated Journal  
  Volume 11 Issue 5 Pages 1720-1733  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma catalysis is emerging for plasma-assisted gas conversion

processes. However, the underlying mechanisms of plasma catalysis are poorly

understood. In this work, we present a 1D heterogeneous catalysis model with axial

dispersion (i.e., accounting for back-mixing and molecular diffusion of fluid elements in

the process stream in the axial direction), for plasma-catalytic NO production from

N2/O2 mixtures. We investigate the concentration and reaction rates of each species

formed as a function of time and position across the catalyst, in order to determine the

underlying mechanisms. To obtain insights into how the performance of the process

can be further improved, we also study how changes in the postplasma gas flow

composition entering the catalyst bed and in the operation conditions of the catalytic

stage affect the performance of NO production.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000926412800001 Publication Date 2023-02-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2168-0485 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 8.4 Times cited (up) Open Access OpenAccess  
  Notes This research was supported by the Excellence of Science FWO-FNRS project (FWO grant ID GoF9618n, EOS ID 30505023) and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 810182 − SCOPE ERC Synergy project). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. Approved Most recent IF: 8.4; 2023 IF: 5.951  
  Call Number PLASMANT @ plasmant @c:irua:195377 Serial 7257  
Permanent link to this record
 

 
Author Eshtehardi, H.A.; Van ‘t Veer, K.; Delplancke, M.-P.; Reniers, F.; Bogaerts, A. pdf  url
doi  openurl
  Title Postplasma Catalytic Model for NO Production: Revealing the Underlying Mechanisms to Improve the Process Efficiency Type A1 Journal article
  Year 2023 Publication ACS Sustainable Chemistry and Engineering Abbreviated Journal  
  Volume 11 Issue 5 Pages 1720-1733  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma catalysis is emerging for plasma-assisted gas conversion

processes. However, the underlying mechanisms of plasma catalysis are poorly

understood. In this work, we present a 1D heterogeneous catalysis model with axial

dispersion (i.e., accounting for back-mixing and molecular diffusion of fluid elements in

the process stream in the axial direction), for plasma-catalytic NO production from

N2/O2 mixtures. We investigate the concentration and reaction rates of each species

formed as a function of time and position across the catalyst, in order to determine the

underlying mechanisms. To obtain insights into how the performance of the process

can be further improved, we also study how changes in the postplasma gas flow

composition entering the catalyst bed and in the operation conditions of the catalytic

stage affect the performance of NO production.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000926412800001 Publication Date 2023-02-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2168-0485 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 8.4 Times cited (up) Open Access OpenAccess  
  Notes Fonds Wetenschappelijk Onderzoek, 30505023 GoF9618n ; Fonds De La Recherche Scientifique – FNRS, 30505023 GoF9618n ; H2020 European Research Council, 810182 ; Approved Most recent IF: 8.4; 2023 IF: 5.951  
  Call Number PLASMANT @ plasmant @c:irua:195377 Serial 7258  
Permanent link to this record
 

 
Author Van Alphen, S.; Hecimovic, A.; Kiefer, C.K.; Fantz, U.; Snyders, R.; Bogaerts, A. pdf  url
doi  openurl
  Title Modelling post-plasma quenching nozzles for improving the performance of CO2 microwave plasmas Type A1 Journal article
  Year 2023 Publication Chemical engineering journal Abbreviated Journal  
  Volume 462 Issue Pages 142217  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Given the ecological problems associated to the CO2 emissions of fossil fuels, plasma technology has gained

interest for conversion of CO2 into value-added products. Microwave plasmas operating at atmospheric pressure

have proven to be especially interesting, due to the high gas temperatures inside the reactor (i.e. up to 6000 K)

allowing for efficient thermal dissociation of CO2 into CO and O2. However, the performance of these high

temperature plasmas is limited by recombination of CO back into CO2 once the gas cools down in the afterglow.

In this work, we computationally investigated several quenching nozzles, developed and experimentally tested

by Hecimovic et al., [1] for their ability to quickly cool the gas after the plasma, thereby quenching the CO

recombination reactions. Using a 3D computational fluid dynamics model and a quasi-1D chemical kinetics

model, we reveal that a reactor without nozzle lacks gas mixing between hot gas in the center and cold gas near

the reactor walls. Especially at low flow rates, where there is an inherent lack of convective cooling due to the

low gas flow velocity, the temperature in the afterglow remains high (between 2000 and 3000 K) for a relatively

long time (in the 0.1 s range). As shown by our quasi-1D chemical kinetics model, this results in a important loss

of CO due to recombination reactions. Attaching a nozzle in the effluent of the reactor induces fast gas quenching

right after the plasma. Indeed, it introduces (i) more convective cooling by forcing cool gas near the walls to mix

with hot gas in the center of the reactor, as well as (ii) more conductive cooling through the water-cooled walls of

the nozzle. Our model shows that gas quenching and the suppression of recombination reactions have more

impact at low flow rates, where recombination is the most limiting factor in the conversion process.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000962382600001 Publication Date 2023-03-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 15.1 Times cited (up) Open Access OpenAccess  
  Notes This research was supported by the Excellence of Science FWO-FNRS project (FWO grant ID GoF9618n, EOS ID 30505023), the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 810182 – SCOPE ERC Synergy project), and through long-term structural funding (Methusalem). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. Approved Most recent IF: 15.1; 2023 IF: 6.216  
  Call Number PLASMANT @ plasmant @c:irua:195889 Serial 7259  
Permanent link to this record
 

 
Author Wang, K.; Ceulemans, S.; Zhang, H.; Tsonev, I.; Zhang, Y.; Long, Y.; Fang, M.; Li, X.; Yan, J.; Bogaerts, A. pdf  url
doi  openurl
  Title Inhibiting recombination to improve the performance of plasma-based CO2 conversion Type A1 Journal Article
  Year 2024 Publication Chemical Engineering Journal Abbreviated Journal Chemical Engineering Journal  
  Volume 481 Issue Pages 148684  
  Keywords A1 Journal Article; Plasma-based CO2 splitting Recombination reactions In-situ gas sampling Fluid dynamics modeling Kinetics modeling Afterglow quenching; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract Warm plasma offers a promising route for CO2 splitting into valuable CO, yet recombination reactions of CO with oxygen, forming again CO2, have recently emerged as critical limitation. This study combines experiments and fluid dynamics + chemical kinetics modelling to comprehensively analyse the recombination reactions upon CO2 splitting in an atmospheric plasmatron. We introduce an innovative in-situ gas sampling technique, enabling 2D spatial mapping of gas product compositions and temperatures, experimentally confirming for the first time the substantial limiting effect of CO recombination reactions in the afterglow region. Our results show that the CO mole fraction at a 5 L/min flow rate drops significantly from 11.9 % at a vertical distance of z = 20 mm in the afterglow region to 8.6 % at z = 40 mm. We constructed a comprehensive 2D model that allows for spatial reaction rates analysis incorporating crucial reactions, and we validated it to kinetically elucidate this phenomenon. CO2 +M⇌O+CO+M and CO2 +O⇌CO+O2 are the dominant reactions, with the forward reactions prevailing in the plasma region and the backward reactions becoming prominent in the afterglow region. These results allow us to propose an afterglow quenching strategy for performance enhancement, which is further demonstrated through a meticulously developed plasmatron reactor with two-stage cooling. Our approach substantially increases the CO2 conversion (e.g., from 6.6 % to 19.5 % at 3 L/min flow rate) and energy efficiency (from 13.5 % to 28.5 %, again at 3 L/min) and significantly shortens the startup time (from ~ 150 s to 25 s). Our study underscores the critical role of inhibiting recombination reactions in plasma-based CO2 conversion and offers new avenues for performance enhancement.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001168999200001 Publication Date 2024-01-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 15.1 Times cited (up) Open Access Not_Open_Access  
  Notes Key Research and Development Program of Zhejiang Province, 2023C03129 ; Vlaamse regering; European Research Council; National Natural Science Foundation of China, 51976191 52276214 ; Horizon 2020 Framework Programme; Fonds De La Recherche Scientifique – FNRS; Fonds Wetenschappelijk Onderzoek, 1101524N ; Vlaams Supercomputer Centrum; Horizon 2020, 101081162 810182 ; European Research Council; Approved Most recent IF: 15.1; 2024 IF: 6.216  
  Call Number PLASMANT @ plasmant @c:irua:204352 Serial 8993  
Permanent link to this record
 

 
Author Loenders, B.; Michiels, R.; Bogaerts, A. pdf  url
doi  openurl
  Title Is a catalyst always beneficial in plasma catalysis? Insights from the many physical and chemical interactions Type A1 Journal Article
  Year 2023 Publication Journal of Energy Chemistry Abbreviated Journal Journal of Energy Chemistry  
  Volume 85 Issue Pages 501-533  
  Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract Plasma-catalytic dry reforming of CH4 (DRM) is promising to convert the greenhouse gasses CH4 and CO2 into value-added chemicals, thus simultaneously providing an alternative to fossil resources as feedstock for the chemical industry. However, while many experiments have been dedicated to plasma-catalytic DRM, there is no consensus yet in literature on the optimal choice of catalyst for targeted products, because the underlying mechanisms are far from understood. Indeed, plasma catalysis is very complex, as it encompasses various chemical and physical interactions between plasma and catalyst, which depend on many parameters. This complexity hampers the comparison of experimental results from different studies, which, in our opinion, is an important bottleneck in the further development of this promising research field. Hence, in this perspective paper, we describe the important physical and chemical effects that should be accounted for when designing plasma-catalytic experiments in general, highlighting the need for standardized experimental setups, as well as careful documentation of packing properties and reaction conditions, to further advance this research field. On the other hand, many parameters also create many windows of opportunity for further optimizing plasma-catalytic systems. Finally, various experiments also reveal the lack of improvement in plasma catalysis compared to plasma-only, specifically for DRM, but the underlying mechanisms are unclear. Therefore, we present our newly developed coupled plasma-surface kinetics model for DRM, to provide more insight in the underlying reasons. Our model illustrates that transition metal catalysts can adversely affect plasmacatalytic DRM, if radicals dominate the plasma-catalyst interactions. Thus, we demonstrate that a good understanding of the plasma-catalyst interactions is crucial to avoiding conditions at which these interactions negatively affect the results, and we provide some recommendations for improvement. For instance, we believe that plasma-catalytic DRM may benefit more from higher reaction temperatures, at which vibrational excitation can enhance the surface reactions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2023-06-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2095-4956 ISBN Additional Links UA library record  
  Impact Factor 13.1 Times cited (up) Open Access Not_Open_Access  
  Notes This research was supported by the FWO-SBO project PlasMa- CatDESIGN (FWO grant ID S001619N), the FWO fellowship of R. Michiels (FWO grant ID 1114921N), and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 810182 – SCOPE ERC Synergy project). The computational resources and services used in this work were provided by the HPC core facility CalcUA of the Universiteit Antwerpen, and VSC (Flemish Supercomputer Center), funded by the Research Foundation – Flanders (FWO) and the Flemish Government. Approved Most recent IF: 13.1; 2023 IF: 2.594  
  Call Number PLASMANT @ plasmant @c:irua:198159 Serial 8806  
Permanent link to this record
 

 
Author Sa, J.; Hu, N.; Heyvaert, W.; Van Gordon, K.; Li, H.; Wang, L.; Bals, S.; Liz-Marzán, L.M.; Ni, W. pdf  url
doi  openurl
  Title Spontaneous Chirality Evolved at the Au–Ag Interface in Plasmonic Nanorods Type A1 Journal article
  Year 2023 Publication Chemistry of materials Abbreviated Journal Chem. Mater.  
  Volume Issue Pages  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Chiral ligands are considered a required ingredient during the synthesis of dissymmetric plasmonic metal nanocrystals. The mechanism behind the generation of chiral structures involves the formation of high Miller index chiral facets, induced by the adsorption of such chiral ligands. We found however that, chirality can also evolve spontaneously, without the involvement of any chiral ligands, during the co-deposition of Au and Ag on Au nanorods. When using a specific Au/Ag ratio, phase segregation of the two metals leads to an interface within the obtained AuAg shell, which can be exposed by removing the Ag component via oxidative etching. Although a close-to-racemic mixture of chiral Au nanorods with right and left handedness is found in solution, electron tomography analysis evidences left- and righthanded helicities, both at the Au-Ag interface and at the exposed surface of Au NRs after Ag etching. The helicity profile of the NRs indicates dominating inclination angles in a range from 30° to 60°. Single-particle optical characterization also reveals random handedness in the plasmonic response of individual nanorods. We hypothesize that, the origin of chirality is related with symmetry breaking during the co-deposition of Au and Ag, through an initial perturbation in a small region on the Au-Ag interface that eventually leads to chiral segregation throughout the nanocrystal.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001052093300001 Publication Date 2023-08-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 8.6 Times cited (up) Open Access OpenAccess  
  Notes The authors acknowledge the financial support from the National Natural Science Foundation of China (grant 22074102). LMLM acknowledges funding from 26 MCIN/AEI/10.13039/501100011033 and “ESF Investing in your future” (Grant PID2020- 117779RB-I00). This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 823717 – ESTEEM3.; Ministerio de Ciencia e Innovaci?n, PID2020-117779RB-I00 ; H2020 Research Infrastructures, 823717 ; European Social Fund, PID2020-117779RB-I00 ; National Natural Science Foundation of China, 22074102 ; Approved Most recent IF: 8.6; 2023 IF: 9.466  
  Call Number EMAT @ emat @c:irua:198151 Serial 8810  
Permanent link to this record
 

 
Author Khalilov, U.; Yusupov, M.; Eshonqulov, Gb.; Neyts, Ec.; Berdiyorov, Gr. pdf  url
doi  openurl
  Title Atomic level mechanisms of graphene healing by methane-based plasma radicals Type A1 Journal article
  Year 2023 Publication FlatChem Abbreviated Journal FlatChem  
  Volume 39 Issue Pages 100506  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000990342500001 Publication Date 2023-04-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2452-2627 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 6.2 Times cited (up) Open Access OpenAccess  
  Notes U.K., M.Y. and G.B.E. acknowledge the support of the Agency for Innovative Development of the Republic of Uzbekistan (Grant numbers F-FA-2021-512 and FZ-2020092435). The computational resources and services used in this work were partially provided by the HPC core facility CalcUA of the Universiteit Antwerpen and VSC (Flemish Supercomputer Center), funded by the FWO and the Flemish Government. Approved Most recent IF: 6.2; 2023 IF: NA  
  Call Number PLASMANT @ plasmant @c:irua:197442 Serial 8813  
Permanent link to this record
 

 
Author Wanten, B.; Vertongen, R.; De Meyer, R.; Bogaerts, A. pdf  url
doi  openurl
  Title Plasma-based CO2 conversion: How to correctly analyze the performance? Type A1 journal article
  Year 2023 Publication Journal of Energy Chemistry Abbreviated Journal Journal of Energy Chemistry  
  Volume 86 Issue Pages 180-196  
  Keywords A1 journal article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001070885000001 Publication Date 2023-07-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2095-4956 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.1 Times cited (up) Open Access Not_Open_Access  
  Notes We acknowledge financial support from the Fund for Scientific Research (FWO) Flanders (Grant ID 110221N), the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Program (grant agreement No 810182 – SCOPE ERC Synergy project), and the Methusalem funding of the University of Antwerp. We acknowledge the icons from the graphical abstract made by dDara, geotatah, Spashicons and Freepik on www.flaticon.com. We also thank Stein Maerivoet, Joachim Slaets, Elizabeth Mercer, Colín Ó’Modráin, Joran Van Turnhout, Pepijn Heirman, dr. Yury Gorbanev, dr. Fanny Girard-Sahun and dr. Sean Kelly for the interesting discussions and feedback. Approved Most recent IF: 13.1; 2023 IF: 2.594  
  Call Number PLASMANT @ plasmant @c:irua:198709 Serial 8816  
Permanent link to this record
 

 
Author Mulder, J.T.T.; Jenkinson, K.; Toso, S.; Prato, M.; Evers, W.H.H.; Bals, S.; Manna, L.; Houtepen, A.J.J. url  doi
openurl 
  Title Nucleation and growth of bipyramidal Yb:LiYF₄ nanocrystals : growing up in a hot environment Type A1 Journal article
  Year 2023 Publication Chemistry of materials Abbreviated Journal  
  Volume 35 Issue 14 Pages 5311-5321  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Lanthanide-doped LiYF4 (Ln:YLF) is commonlyused fora broad variety of optical applications, such as lasing, photon upconversionand optical refrigeration. When synthesized as nanocrystals (NCs),this material is also of interest for biological applications andfundamental physical studies. Until now, it was unclear how Ln:YLFNCs grow from their ionic precursors into tetragonal NCs with a well-defined,bipyramidal shape and uniform dopant distribution. Here, we studythe nucleation and growth of ytterbium-doped LiYF4 (Yb:YLF),as a template for general Ln:YLF NC syntheses. We show that the formationof bipyramidal Yb:YLF NCs is a multistep process starting with theformation of amorphous Yb:YLF spheres. Over time, these spheres growvia Ostwald ripening and crystallize, resulting in bipyramidal Yb:YLFNCs. We further show that prolonged heating of the NCs results inthe degradation of the NCs, observed by the presence of large LiFcubes and small, irregular Yb:YLF NCs. Due to the similarity in chemicalnature of all lanthanide ions our work sheds light on the formationstages of Ln:YLF NCs in general.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001021474500001 Publication Date 2023-07-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756; 1520-5002 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 8.6 Times cited (up) Open Access OpenAccess  
  Notes This project has received funding from the European Union's Horizon 2020 research and innovation program under Grant Agreement No. 766900 (Testing the large-scale limit of quantum mechanics). The authors thank Niranjan Saikumar for proof reading the manuscript. Approved Most recent IF: 8.6; 2023 IF: 9.466  
  Call Number UA @ admin @ c:irua:197787 Serial 8907  
Permanent link to this record
 

 
Author Ramesha, B.M.; Pawlak, B.; Arenas Esteban, D.; Reekmans, G.; Bals, S.; Marchal, W.; Carleer, R.; Adriaensens, P.; Meynen, V. pdf  url
doi  openurl
  Title Partial hydrolysis of diphosphonate ester during the formation of hybrid Tio₂ nanoparticles : role of acid concentration Type A1 Journal article
  Year 2023 Publication ChemPhysChem : a European journal of chemical physics and physical chemistry Abbreviated Journal  
  Volume Issue Pages e202300437-13  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)  
  Abstract In the present work, a method was utilized to control the in‐situ partial hydrolysis of a diphosphonate ester in presence of a titania precursor and in function of acid content and its impact on the hybrid nanoparticles was assessed. The hydrolysis degree of organodiphosphonate ester linkers during the formation of hybrid organic‐inorganic metal oxide nanoparticles, are relatively underexplored . Quantitative solution NMR spectroscopy revealed that during the synthesis of TiO2 nanoparticles, an increase in acid concentration introduces a higher degree of partial hydrolysis of the TEPD linker into diverse acid/ester derivatives of TEPD. Increasing the HCl/Ti ratio from 1 to 3, resulted in an increase in degree of partial hydrolysis of the TEPD linker in solution from 4% to 18.8% under the here applied conditions. As a result of the difference in partial hydrolysis, the linker‐TiO2 bonding was altered. Upon subsequent drying of the colloidal TiO2 solution, different textures, at nanoscale and macroscopic scale, were obtained dependent on the HCl/Ti ratio and thus the degree of hydrolysis of TEPD. Understanding such linker‐TiO2 nanoparticle surface dynamics is crucial for making hybrid organic‐inorganic materials (i.e. (porous) metal phosphonates) employed in applications such as electronic/photonic devices, separation technology and heterogeneous catalysts.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001071673900001 Publication Date 2023-09-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1439-4235; 1439-7641 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 2.9 Times cited (up) Open Access OpenAccess  
  Notes This work was supported by the Research Foundation-Flanders (FWO Vlaanderen) Project G.0121.17 N. The work was further supported by Hasselt University and the Research Foundation – Flanders (FWO Vlaanderen) via the Hercules project AUHL/15/2 – GOH3816 N. V. M. acknowledges the Research Foundation Flanders (FWO) for project K801621 N. B. M. R. acknowledges, Prof. Dr. Christophe Detavernier and Dr. Davy Deduystche (COCOON, Ghent University) for PXRD and VT-XRD measurements, Prof. Dr. Christophe Van De Velde (iPRACS, University of Antwerp) and Dr. Radu Ciocarlan (LADCA, University of Antwerp) for helpful discussions on PXRD measurements and Dr. Nick Gys (University of Antwerp and VITO) for ICP-OES measurements. Approved Most recent IF: 2.9; 2023 IF: 3.075  
  Call Number UA @ admin @ c:irua:198934 Serial 8911  
Permanent link to this record
 

 
Author Teunissen, J.L.; Braeckevelt, T.; Skvortsova, I.; Guo, J.; Pradhan, B.; Debroye, E.; Roeffaers, M.B.J.; Hofkens, J.; Van Aert, S.; Bals, S.; Rogge, S.M.J.; Van Speybroeck, V. pdf  url
doi  openurl
  Title Additivity of Atomic Strain Fields as a Tool to Strain-Engineering Phase-Stabilized CsPbI3Perovskites Type A1 Journal Article
  Year 2023 Publication The Journal of Physical Chemistry C Abbreviated Journal J. Phys. Chem. C  
  Volume 127 Issue 48 Pages 23400-23411  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract CsPbI3 is a promising perovskite material for photovoltaic applications in its photoactive perovskite or black phase. However, the material degrades to a photovoltaically inactive or yellow phase at room temperature. Various mitigation strategies are currently being developed to increase the lifetime of the black phase, many of which rely on inducing strains in the material that hinder the black-to-yellow phase transition. Physical insight into how these strategies exactly induce strain as well as knowledge of the spatial extent over which these strains impact the material is crucial to optimize these approaches but is still lacking. Herein, we combine machine learning potential-based molecular dynamics simulations with our in silico strain engineering approach to accurately quantify strained large-scale atomic structures on a nanosecond time scale. To this end, we first model the strain fields introduced by atomic substitutions as they form the most elementary strain sources. We demonstrate that the magnitude of the induced strain fields decays exponentially with the distance from the strain source, following a decay rate that is largely independent of the specific substitution. Second, we show that the total strain field induced by multiple strain sources can be predicted to an excellent approximation by summing the strain fields of each individual source. Finally, through a case study, we illustrate how this additive character allows us to explain how complex strain fields, induced by spatially extended strain sources, can be predicted by adequately combining the strain fields caused by local strain sources. Hence, the strain additivity proposed here can be adopted to further our insight into the complex strain behavior in perovskites and to design strain from the atomic level onward to enhance their sought-after phase stability.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001116862000001 Publication Date 2023-12-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.7 Times cited (up) Open Access OpenAccess  
  Notes This work was supported by iBOF-21-085 PERsist (Special Research Fund of Ghent University, KU Leuven Research Fund, and the Research Fund of the University of Antwerp). S.M.J.R., T.B., and B.P. acknowledge financial support from the Research Foundation-Flanders (FWO) through two postdoctoral fellow- ships [grant nos. 12T3522N (S.M.J.R.) and 1275521N (B.P.)] and an SB-FWO fellowship [grant no. 1SC1319 (T.B.)]. E.D., M.B.J.R., and J.H. acknowledge financial support from the Research Foundation-Flanders (FWO, grant nos. G.0B39.15, G.0B49.15, G098319N, S002019N, S004322N, and ZW15_09- GOH6316). J.H. acknowledges support from the Flemish government through long-term structural funding Methusalem (CASAS2, Meth/15/04) and the MPI as an MPI fellow. S.V.A. and S.B. acknowledge financial support from the Research Foundation-Flanders (FWO, grant no. G0A7723N). S.M.J.R. and V.V.S. acknowledge funding from the Research Board of Ghent University (BOF). The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation- Flanders (FWO) and the Flemish Government�department EWI.; KU Leuven, iBOF-21-085 PERsist ; Universiteit Antwerpen, iBOF-21-085 PERsist ; Universiteit Gent, iBOF-21-085 PERsist ; Vlaamse regering, CASAS2, Meth/15/04 ; Fonds Wetenschappelijk Onderzoek, G.0B39.15 G098319N G.0B49.15 1SC1319 12T3522N ZW15 09-GOH6316 G0A7723N 1275521N S004322N S002019N ; Approved Most recent IF: 3.7; 2023 IF: 4.536  
  Call Number EMAT @ emat @c:irua:202124 Serial 8985  
Permanent link to this record
 

 
Author Li, S.; Sun, J.; Gorbanev, Y.; van’t Veer, K.; Loenders, B.; Yi, Y.; Kenis, T.; Chen, Q.; Bogaerts, A. pdf  url
doi  openurl
  Title Plasma-Assisted Dry Reforming of CH4: How Small Amounts of O2Addition Can Drastically Enhance the Oxygenate Production─Experiments and Insights from Plasma Chemical Kinetics Modeling Type A1 Journal Article
  Year 2023 Publication ACS Sustainable Chemistry & Engineering Abbreviated Journal ACS Sustainable Chem. Eng.  
  Volume 11 Issue 42 Pages 15373-15384  
  Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract Plasma-based dry reforming of methane (DRM) into

high-value-added oxygenates is an appealing approach to enable

otherwise thermodynamically unfavorable chemical reactions at

ambient pressure and near room temperature. However, it suffers

from coke deposition due to the deep decomposition of CH4. In this

work, we assess the DRM performance upon O2 addition, as well as

varying temperature, CO2/CH4 ratio, discharge power, and gas

residence time, for optimizing oxygenate production. By adding O2,

the main products can be shifted from syngas (CO + H2) toward

oxygenates. Chemical kinetics modeling shows that the improved

oxygenate production is due to the increased concentration of

oxygen-containing radicals, e.g., O, OH, and HO2, formed by electron

impact dissociation [e + O2 → e + O + O/O(1D)] and subsequent

reactions with H atoms. Our study reveals the crucial role of oxygen-coupling in DRM aimed at oxygenates, providing practical

solutions to suppress carbon deposition and at the same time enhance the oxygenates production in plasma-assisted DRM.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001082603900001 Publication Date 2023-10-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2168-0485 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.4 Times cited (up) Open Access Not_Open_Access  
  Notes Fonds Wetenschappelijk Onderzoek, S001619N ; China Scholarship Council, 202006060029 ; National Natural Science Foundation of China, 21975018 ; H2020 European Research Council, 810182 ; Approved Most recent IF: 8.4; 2023 IF: 5.951  
  Call Number PLASMANT @ plasmant @c:irua:201013 Serial 8966  
Permanent link to this record
 

 
Author Meng, S.; Li, S.; Sun, S.; Bogaerts, A.; Liu, Y.; Yi, Y. pdf  url
doi  openurl
  Title NH3 decomposition for H2 production by thermal and plasma catalysis using bimetallic catalysts Type A1 Journal article
  Year 2024 Publication Chemical engineering science Abbreviated Journal Chemical Engineering Science  
  Volume 283 Issue Pages 119449  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma catalysis has emerged as a promising approach for driving thermodynamically unfavorable chemical

reactions. Nevertheless, comprehending the mechanisms involved remains a challenge, leading to uncertainty

about whether the optimal catalyst in plasma catalysis aligns with that in thermal catalysis. In this research, we

explore this question by studying monometallic catalysts (Fe, Co, Ni and Mo) and bimetallic catalysts (Fe-Co, Mo-

Co, Fe-Ni and Mo-Ni) in both thermal catalytic and plasma catalytic NH3 decomposition. Our findings reveal that

the Fe-Co bimetallic catalyst exhibits the highest activity in thermal catalysis, the Fe-Ni bimetallic catalyst

outperforms others in plasma catalysis, indicating a discrepancy between the optimal catalysts for the two

catalytic modes in NH3 decomposition. Comprehensive catalyst characterization, kinetic analysis, temperature

program surface reaction experiments and plasma diagnosis are employed to discuss the key factors influencing

NH3 decomposition performance.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001105312500001 Publication Date 2023-10-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0009-2509 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.7 Times cited (up) Open Access Not_Open_Access  
  Notes Universiteit Antwerpen, 32249 ; National Natural Science Foundation of China, 21503032 ; PetroChina Innovation Foundation, 2018D-5007-0501 ; Approved Most recent IF: 4.7; 2024 IF: 2.895  
  Call Number PLASMANT @ plasmant @c:irua:201009 Serial 8967  
Permanent link to this record
 

 
Author Bogaerts, A. pdf  url
doi  openurl
  Title Special Issue on “Dielectric Barrier Discharges and their Applications” in Commemoration of the 20th Anniversary of Dr. Ulrich Kogelschatz’s Work Type A1 Journal Article
  Year 2023 Publication Plasma Chemistry and Plasma Processing Abbreviated Journal Plasma Chem Plasma Process  
  Volume 43 Issue 6 Pages 1281-1285  
  Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract n/a  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001110371000001 Publication Date 2023-11-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0272-4324 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.6 Times cited (up) Open Access Not_Open_Access  
  Notes n/a Approved Most recent IF: 3.6; 2023 IF: 2.355  
  Call Number PLASMANT @ plasmant @c:irua:201387 Serial 8969  
Permanent link to this record
 

 
Author Lin, A.; Gromov, M.; Nikiforov, A.; Smits, E.; Bogaerts, A. pdf  url
doi  openurl
  Title Characterization of Non-Thermal Dielectric Barrier Discharges for Plasma Medicine: From Plastic Well Plates to Skin Surfaces Type A1 Journal Article
  Year 2023 Publication Plasma Chemistry and Plasma Processing Abbreviated Journal Plasma Chem Plasma Process  
  Volume 43 Issue 6 Pages 1587-1612  
  Keywords A1 Journal Article; Non-thermal plasma · Plasma medicine · Dielectric barrier discharge · Plasma diagnostics · Plasma surface interaction · In situ plasma monitoring; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract technologies have been expanding, and one of the most exciting and rapidly growing

applications is in biology and medicine. Most biomedical studies with DBD plasma systems are performed in vitro, which include cells grown on the surface of plastic well plates, or in vivo, which include animal research models (e.g. mice, pigs). Since many DBD systems use the biological target as the secondary electrode for direct plasma generation and treatment, they are sensitive to the surface properties of the target, and thus can be altered based on the in vitro or in vivo system used. This could consequently affect biological response from plasma treatment. Therefore, in this study, we investigated the DBD plasma behavior both in vitro (i.e. 96-well flat bottom plates, 96-well U-bottom plates, and 24-well flat bottom plates), and in vivo (i.e. mouse skin). Intensified charge coupled device (ICCD) imaging was performed and the plasma discharges were visually distinguishable between the different systems. The geometry of the wells did not affect DBD plasma generation for low application distances (≤ 2 mm), but differentially affected plasma uniformity on the bottom of the well at greater distances. Since DBD plasma treatment in vitro is rarely performed in dry wells for plasma medicine experiments, the effect of well wetness was also investigated. In all in vitro cases, the uniformity of the DBD plasma was affected when comparing wet versus dry wells, with the plasma in the wide-bottom wells appearing the most similar to plasma generated on mouse skin. Interestingly, based on quantification of ICCD images, the DBD plasma intensity per surface area demonstrated an exponential one-phase decay with increasing application distance, regardless of the in vitro or in vivo system. This trend is similar to that of the energy per pulse of plasma, which is used to determine the total plasma treatment energy for biological systems. Optical emission spectroscopy performed on the plasma revealed similar trends in radical species generation between the plastic well plates and mouse skin. Therefore, taken together, DBD plasma intensity per surface area may be a valuable parameter to be used as a simple method for in situ monitoring during biological treatment and active plasma treatment control, which can be applied for in vitro and in vivo systems.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001072607700001 Publication Date 2023-09-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0272-4324 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.6 Times cited (up) Open Access Not_Open_Access  
  Notes This work was partially funded by the Research Foundation—Flanders (FWO) and supported by the following Grants: 12S9221N (A. L.), G044420N (A. L. and A. B.), and G033020N (A.B.). We would also like to thank several patrons, as part of this research was funded by donations from different donors, including Dedert Schilde vzw, Mr Willy Floren, and the Vereycken family. We would also like to acknowledge the support from the European Cooperation in Science & Technology (COST) Action on “Therapeutical applications of Cold Plasmas” (CA20114; PlasTHER). Approved Most recent IF: 3.6; 2023 IF: 2.355  
  Call Number PLASMANT @ plasmant @c:irua:200285 Serial 8970  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: