|
Record |
Links |
|
Author |
Li, S.; Sun, J.; Gorbanev, Y.; van’t Veer, K.; Loenders, B.; Yi, Y.; Kenis, T.; Chen, Q.; Bogaerts, A. |
|
|
Title |
Plasma-Assisted Dry Reforming of CH4: How Small Amounts of O2Addition Can Drastically Enhance the Oxygenate Production─Experiments and Insights from Plasma Chemical Kinetics Modeling |
Type |
A1 Journal Article |
|
Year |
2023 |
Publication |
ACS Sustainable Chemistry & Engineering |
Abbreviated Journal |
ACS Sustainable Chem. Eng. |
|
|
Volume |
11 |
Issue |
42 |
Pages |
15373-15384 |
|
|
Keywords |
A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ; |
|
|
Abstract |
Plasma-based dry reforming of methane (DRM) into
high-value-added oxygenates is an appealing approach to enable
otherwise thermodynamically unfavorable chemical reactions at
ambient pressure and near room temperature. However, it suffers
from coke deposition due to the deep decomposition of CH4. In this
work, we assess the DRM performance upon O2 addition, as well as
varying temperature, CO2/CH4 ratio, discharge power, and gas
residence time, for optimizing oxygenate production. By adding O2,
the main products can be shifted from syngas (CO + H2) toward
oxygenates. Chemical kinetics modeling shows that the improved
oxygenate production is due to the increased concentration of
oxygen-containing radicals, e.g., O, OH, and HO2, formed by electron
impact dissociation [e + O2 → e + O + O/O(1D)] and subsequent
reactions with H atoms. Our study reveals the crucial role of oxygen-coupling in DRM aimed at oxygenates, providing practical
solutions to suppress carbon deposition and at the same time enhance the oxygenates production in plasma-assisted DRM. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
001082603900001 |
Publication Date |
2023-10-23 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2168-0485 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
8.4 |
Times cited |
|
Open Access |
Not_Open_Access |
|
|
Notes |
Fonds Wetenschappelijk Onderzoek, S001619N ; China Scholarship Council, 202006060029 ; National Natural Science Foundation of China, 21975018 ; H2020 European Research Council, 810182 ; |
Approved |
Most recent IF: 8.4; 2023 IF: 5.951 |
|
|
Call Number |
PLASMANT @ plasmant @c:irua:201013 |
Serial |
8966 |
|
Permanent link to this record |