|
Record |
Links |
|
Author |
Lin, A.; Gromov, M.; Nikiforov, A.; Smits, E.; Bogaerts, A. |
|
|
Title |
Characterization of Non-Thermal Dielectric Barrier Discharges for Plasma Medicine: From Plastic Well Plates to Skin Surfaces |
Type |
A1 Journal Article |
|
Year |
2023 |
Publication |
Plasma Chemistry and Plasma Processing |
Abbreviated Journal |
Plasma Chem Plasma Process |
|
|
Volume |
43 |
Issue |
6 |
Pages |
1587-1612 |
|
|
Keywords |
A1 Journal Article; Non-thermal plasma · Plasma medicine · Dielectric barrier discharge · Plasma diagnostics · Plasma surface interaction · In situ plasma monitoring; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ; |
|
|
Abstract |
technologies have been expanding, and one of the most exciting and rapidly growing
applications is in biology and medicine. Most biomedical studies with DBD plasma systems are performed in vitro, which include cells grown on the surface of plastic well plates, or in vivo, which include animal research models (e.g. mice, pigs). Since many DBD systems use the biological target as the secondary electrode for direct plasma generation and treatment, they are sensitive to the surface properties of the target, and thus can be altered based on the in vitro or in vivo system used. This could consequently affect biological response from plasma treatment. Therefore, in this study, we investigated the DBD plasma behavior both in vitro (i.e. 96-well flat bottom plates, 96-well U-bottom plates, and 24-well flat bottom plates), and in vivo (i.e. mouse skin). Intensified charge coupled device (ICCD) imaging was performed and the plasma discharges were visually distinguishable between the different systems. The geometry of the wells did not affect DBD plasma generation for low application distances (≤ 2 mm), but differentially affected plasma uniformity on the bottom of the well at greater distances. Since DBD plasma treatment in vitro is rarely performed in dry wells for plasma medicine experiments, the effect of well wetness was also investigated. In all in vitro cases, the uniformity of the DBD plasma was affected when comparing wet versus dry wells, with the plasma in the wide-bottom wells appearing the most similar to plasma generated on mouse skin. Interestingly, based on quantification of ICCD images, the DBD plasma intensity per surface area demonstrated an exponential one-phase decay with increasing application distance, regardless of the in vitro or in vivo system. This trend is similar to that of the energy per pulse of plasma, which is used to determine the total plasma treatment energy for biological systems. Optical emission spectroscopy performed on the plasma revealed similar trends in radical species generation between the plastic well plates and mouse skin. Therefore, taken together, DBD plasma intensity per surface area may be a valuable parameter to be used as a simple method for in situ monitoring during biological treatment and active plasma treatment control, which can be applied for in vitro and in vivo systems. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
001072607700001 |
Publication Date |
2023-09-27 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0272-4324 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
3.6 |
Times cited |
|
Open Access |
Not_Open_Access |
|
|
Notes |
This work was partially funded by the Research Foundation—Flanders (FWO) and supported by the following Grants: 12S9221N (A. L.), G044420N (A. L. and A. B.), and G033020N (A.B.). We would also like to thank several patrons, as part of this research was funded by donations from different donors, including Dedert Schilde vzw, Mr Willy Floren, and the Vereycken family. We would also like to acknowledge the support from the European Cooperation in Science & Technology (COST) Action on “Therapeutical applications of Cold Plasmas” (CA20114; PlasTHER). |
Approved |
Most recent IF: 3.6; 2023 IF: 2.355 |
|
|
Call Number |
PLASMANT @ plasmant @c:irua:200285 |
Serial |
8970 |
|
Permanent link to this record |