|
Record |
Links |
|
Author |
Meng, S.; Li, S.; Sun, S.; Bogaerts, A.; Liu, Y.; Yi, Y. |
|
|
Title |
NH3 decomposition for H2 production by thermal and plasma catalysis using bimetallic catalysts |
Type |
A1 Journal article |
|
Year |
2024 |
Publication |
Chemical engineering science |
Abbreviated Journal |
Chemical Engineering Science |
|
|
Volume |
283 |
Issue |
|
Pages |
119449 |
|
|
Keywords |
A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT) |
|
|
Abstract |
Plasma catalysis has emerged as a promising approach for driving thermodynamically unfavorable chemical
reactions. Nevertheless, comprehending the mechanisms involved remains a challenge, leading to uncertainty
about whether the optimal catalyst in plasma catalysis aligns with that in thermal catalysis. In this research, we
explore this question by studying monometallic catalysts (Fe, Co, Ni and Mo) and bimetallic catalysts (Fe-Co, Mo-
Co, Fe-Ni and Mo-Ni) in both thermal catalytic and plasma catalytic NH3 decomposition. Our findings reveal that
the Fe-Co bimetallic catalyst exhibits the highest activity in thermal catalysis, the Fe-Ni bimetallic catalyst
outperforms others in plasma catalysis, indicating a discrepancy between the optimal catalysts for the two
catalytic modes in NH3 decomposition. Comprehensive catalyst characterization, kinetic analysis, temperature
program surface reaction experiments and plasma diagnosis are employed to discuss the key factors influencing
NH3 decomposition performance. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
001105312500001 |
Publication Date |
2023-10-28 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0009-2509 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
4.7 |
Times cited |
|
Open Access |
Not_Open_Access |
|
|
Notes |
Universiteit Antwerpen, 32249 ; National Natural Science Foundation of China, 21503032 ; PetroChina Innovation Foundation, 2018D-5007-0501 ; |
Approved |
Most recent IF: 4.7; 2024 IF: 2.895 |
|
|
Call Number |
PLASMANT @ plasmant @c:irua:201009 |
Serial |
8967 |
|
Permanent link to this record |