|
Record |
Links |
|
Author |
Van Alphen, S.; Hecimovic, A.; Kiefer, C.K.; Fantz, U.; Snyders, R.; Bogaerts, A. |
|
|
Title |
Modelling post-plasma quenching nozzles for improving the performance of CO2 microwave plasmas |
Type |
A1 Journal article |
|
Year |
2023 |
Publication |
Chemical engineering journal |
Abbreviated Journal |
|
|
|
Volume |
462 |
Issue |
|
Pages |
142217 |
|
|
Keywords |
A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT) |
|
|
Abstract |
Given the ecological problems associated to the CO2 emissions of fossil fuels, plasma technology has gained
interest for conversion of CO2 into value-added products. Microwave plasmas operating at atmospheric pressure
have proven to be especially interesting, due to the high gas temperatures inside the reactor (i.e. up to 6000 K)
allowing for efficient thermal dissociation of CO2 into CO and O2. However, the performance of these high
temperature plasmas is limited by recombination of CO back into CO2 once the gas cools down in the afterglow.
In this work, we computationally investigated several quenching nozzles, developed and experimentally tested
by Hecimovic et al., [1] for their ability to quickly cool the gas after the plasma, thereby quenching the CO
recombination reactions. Using a 3D computational fluid dynamics model and a quasi-1D chemical kinetics
model, we reveal that a reactor without nozzle lacks gas mixing between hot gas in the center and cold gas near
the reactor walls. Especially at low flow rates, where there is an inherent lack of convective cooling due to the
low gas flow velocity, the temperature in the afterglow remains high (between 2000 and 3000 K) for a relatively
long time (in the 0.1 s range). As shown by our quasi-1D chemical kinetics model, this results in a important loss
of CO due to recombination reactions. Attaching a nozzle in the effluent of the reactor induces fast gas quenching
right after the plasma. Indeed, it introduces (i) more convective cooling by forcing cool gas near the walls to mix
with hot gas in the center of the reactor, as well as (ii) more conductive cooling through the water-cooled walls of
the nozzle. Our model shows that gas quenching and the suppression of recombination reactions have more
impact at low flow rates, where recombination is the most limiting factor in the conversion process. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000962382600001 |
Publication Date |
2023-03-03 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1385-8947 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
15.1 |
Times cited |
|
Open Access |
OpenAccess |
|
|
Notes |
This research was supported by the Excellence of Science FWO-FNRS project (FWO grant ID GoF9618n, EOS ID 30505023), the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 810182 – SCOPE ERC Synergy project), and through long-term structural funding (Methusalem). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. |
Approved |
Most recent IF: 15.1; 2023 IF: 6.216 |
|
|
Call Number |
PLASMANT @ plasmant @c:irua:195889 |
Serial |
7250 |
|
Permanent link to this record |