|
Abstract |
We explorethepotentialofmicrowave(MW)-plasma-based in situ
utilizationoftheMartianatmospherewithafocusonthenovelpos-
sibilityoffixingN2 forfertilizerproduction. Conversioninasimulant
plasma (i.e., 96% CO2, 2% N2, and 2% Ar),performedunderen-
ergyconditionssimilartothoseoftheMarsOxygen In Situ Resource
UtilizationExperiment(MOXIE),currentlyonboardNASA’sPerse-
verancerover,demonstratesthatO/O2 formedthroughCO2 dissociation
facilitatesthefixationoftheN2 fractionviaoxidationtoNOx.
PromisingproductionratesforO2, CO,andNOx of 47.0,76.1,and
1.25g/h,respectively,arerecordedwithcorrespondingenergy
costs of0.021,0.013,and0.79kWh/g,respectively.Notably,O2
productionratesare 30 timeshigherthanthosedemonstrated
by MOXIE,whiletheNOx production raterepresentsan 7% fixa-
tionoftheN2 fraction presentintheMartian atmosphere.MW-
plasma-basedconversionthereforeshowsgreatpotentialasan in
situ resourceutilization(ISRU)technologyonMarsinthatitsimulta-
neouslyfixesN2 and producesO2. |
|
|
Notes |
the Euro- pean Marie Skłodowska-Curie Individual Fellowship ‘‘PENFIX’’ within Horizon 2020 (grant no. 838181), the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Program (grant no. 810182; SCOPE ERC Synergy project), and the Excellence of Science FWO-FNRS project (FWO grant no. GoF9618n and EOS no. 30505023). C.V. was supported by a FWO aspirant PhD fellowship (grant no. 1184820N). The calculations were per- formed with the Turing HPC infrastructure at the CalcUA core facility of the Univer- siteit Antwerpen (Uantwerpen), a division of the Flemish Supercomputer Centre VSC, funded by the Hercules Foundation, the Flemish government (department EWI), and Uantwerpen. |
Approved |
Most recent IF: 23.5 |
|