|
Record |
Links |
|
Author |
Mulder, J.T.T.; Jenkinson, K.; Toso, S.; Prato, M.; Evers, W.H.H.; Bals, S.; Manna, L.; Houtepen, A.J.J. |
|
|
Title |
Nucleation and growth of bipyramidal Yb:LiYF₄ nanocrystals : growing up in a hot environment |
Type |
A1 Journal article |
|
Year |
2023 |
Publication |
Chemistry of materials |
Abbreviated Journal |
|
|
|
Volume |
35 |
Issue |
14 |
Pages |
5311-5321 |
|
|
Keywords |
A1 Journal article; Electron microscopy for materials research (EMAT) |
|
|
Abstract |
Lanthanide-doped LiYF4 (Ln:YLF) is commonlyused fora broad variety of optical applications, such as lasing, photon upconversionand optical refrigeration. When synthesized as nanocrystals (NCs),this material is also of interest for biological applications andfundamental physical studies. Until now, it was unclear how Ln:YLFNCs grow from their ionic precursors into tetragonal NCs with a well-defined,bipyramidal shape and uniform dopant distribution. Here, we studythe nucleation and growth of ytterbium-doped LiYF4 (Yb:YLF),as a template for general Ln:YLF NC syntheses. We show that the formationof bipyramidal Yb:YLF NCs is a multistep process starting with theformation of amorphous Yb:YLF spheres. Over time, these spheres growvia Ostwald ripening and crystallize, resulting in bipyramidal Yb:YLFNCs. We further show that prolonged heating of the NCs results inthe degradation of the NCs, observed by the presence of large LiFcubes and small, irregular Yb:YLF NCs. Due to the similarity in chemicalnature of all lanthanide ions our work sheds light on the formationstages of Ln:YLF NCs in general. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
001021474500001 |
Publication Date |
2023-07-03 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0897-4756; 1520-5002 |
ISBN |
|
Additional Links |
UA library record; WoS full record |
|
|
Impact Factor |
8.6 |
Times cited |
|
Open Access |
OpenAccess |
|
|
Notes |
This project has received funding from the European Union's Horizon 2020 research and innovation program under Grant Agreement No. 766900 (Testing the large-scale limit of quantum mechanics). The authors thank Niranjan Saikumar for proof reading the manuscript. |
Approved |
Most recent IF: 8.6; 2023 IF: 9.466 |
|
|
Call Number |
UA @ admin @ c:irua:197787 |
Serial |
8907 |
|
Permanent link to this record |