|
Record |
Links |
|
Author |
Eshtehardi, H.A.; Van ‘t Veer, K.; Delplancke, M.-P.; Reniers, F.; Bogaerts, A. |
|
|
Title |
Postplasma Catalytic Model for NO Production: Revealing the Underlying Mechanisms to Improve the Process Efficiency |
Type |
A1 Journal article |
|
Year |
2023 |
Publication |
ACS Sustainable Chemistry and Engineering |
Abbreviated Journal |
|
|
|
Volume |
11 |
Issue |
5 |
Pages |
1720-1733 |
|
|
Keywords |
A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT) |
|
|
Abstract |
Plasma catalysis is emerging for plasma-assisted gas conversion
processes. However, the underlying mechanisms of plasma catalysis are poorly
understood. In this work, we present a 1D heterogeneous catalysis model with axial
dispersion (i.e., accounting for back-mixing and molecular diffusion of fluid elements in
the process stream in the axial direction), for plasma-catalytic NO production from
N2/O2 mixtures. We investigate the concentration and reaction rates of each species
formed as a function of time and position across the catalyst, in order to determine the
underlying mechanisms. To obtain insights into how the performance of the process
can be further improved, we also study how changes in the postplasma gas flow
composition entering the catalyst bed and in the operation conditions of the catalytic
stage affect the performance of NO production. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000926412800001 |
Publication Date |
2023-02-06 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2168-0485 |
ISBN |
|
Additional Links |
UA library record; WoS full record |
|
|
Impact Factor |
8.4 |
Times cited |
|
Open Access |
OpenAccess |
|
|
Notes |
This research was supported by the Excellence of Science FWO-FNRS project (FWO grant ID GoF9618n, EOS ID 30505023) and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 810182 − SCOPE ERC Synergy project). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. |
Approved |
Most recent IF: 8.4; 2023 IF: 5.951 |
|
|
Call Number |
PLASMANT @ plasmant @c:irua:195377 |
Serial |
7257 |
|
Permanent link to this record |