|
Record |
Links |
|
Author |
Liu, R.; Hao, Y.; Wang, T.; Wang, L.; Bogaerts, A.; Guo, H.; Yi, Y. |
|
|
Title |
Hybrid plasma-thermal system for methane conversion to ethylene and hydrogen |
Type |
A1 Journal article |
|
Year |
2023 |
Publication |
Chemical engineering journal |
Abbreviated Journal |
|
|
|
Volume |
463 |
Issue |
|
Pages |
142442 |
|
|
Keywords |
A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT) |
|
|
Abstract |
By combining dielectric barrier discharge plasma and external heating, we exploit a two-stage hybrid plasmathermal
system (HPTS), i.e., a plasma stage followed by a thermal stage, for direct non-oxidative coupling of
CH4 to C2H4 and H2, yielding a CH4 conversion of ca. 17 %. In the two-stage HPTS, the plasma first converts CH4
into C2H6 and C3H8, which in the thermal stage leads to a high C2H4 selectivity of ca. 63 % by pyrolysis, with H2
selectivity of ca. 64 %. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000953890500001 |
Publication Date |
2023-03-16 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1385-8947 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
15.1 |
Times cited |
|
Open Access |
OpenAccess |
|
|
Notes |
This work was supported by the National Natural Science Foundation of China [22272015, 21503032], the Fundamental Research Funds for the Central Universities of China [DUT21JC40]. |
Approved |
Most recent IF: 15.1; 2023 IF: 6.216 |
|
|
Call Number |
PLASMANT @ plasmant @c:irua:195888 |
Serial |
7253 |
|
Permanent link to this record |