|
Record |
Links |
|
Author |
Vervloessem, E.; Gromov, M.; De Geyter, N.; Bogaerts, A.; Gorbanev, Y.; Nikiforov, A. |
|
|
Title |
NH3and HNOxFormation and Loss in Nitrogen Fixation from Air with Water Vapor by Nonequilibrium Plasma |
Type |
A1 Journal article |
|
Year |
2023 |
Publication |
ACS Sustainable Chemistry and Engineering |
Abbreviated Journal |
|
|
|
Volume |
11 |
Issue |
10 |
Pages |
4289-4298 |
|
|
Keywords |
A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT) |
|
|
Abstract |
The current global energy crisis indicated that increasing our
insight into nonfossil fuel nitrogen fixation pathways for synthetic fertilizer
production is more crucial than ever. Nonequilibrium plasma is a good candidate
because it can use N2 or air as a N source and water directly as a H source, instead
of H2 or fossil fuel (CH4). In this work, we investigate NH3 gas phase formation
pathways from humid N2 and especially humid air up to 2.4 mol % H2O (100%
relative humidity at 20 °C) by optical emission spectroscopy and Fouriertransform
infrared spectroscopy. We demonstrate that the nitrogen fixation
capacity is increased when water vapor is added, as this enables HNO2 and NH3
production in both N2 and air. However, we identified a significant loss
mechanism for NH3 and HNO2 that occurs in systems where these species are
synthesized simultaneously; i.e., downstream from the plasma, HNO2 reacts with NH3 to form NH4NO2, which rapidly decomposes
into N2 and H2O. We also discuss approaches to prevent this loss mechanism, as it reduces the effective nitrogen fixation when not
properly addressed and therefore should be considered in future works aimed at optimizing plasma-based N2 fixation. In-line removal
of HNO2 or direct solvation in liquid are two proposed strategies to suppress this loss mechanism. Indeed, using liquid H2O is
beneficial for accumulation of the N2 fixation products. Finally, in humid air, we also produce NH4NO3, from the reaction of HNO3
with NH3, which is of direct interest for fertilizer application. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000953337700001 |
Publication Date |
2023-03-13 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2168-0485 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
8.4 |
Times cited |
|
Open Access |
OpenAccess |
|
|
Notes |
This research is supported by the Excellence of Science FWOFNRS project (NITROPLASM, FWO grant ID GoF9618n, EOS ID 30505023), the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant No. 810182 − SCOPE ERC Synergy project), and the Fund for Scientific Research (FWO) Flanders Bioeconomy project (grant No. G0G2322N), funded by the European Union-NextGenerationEU. |
Approved |
Most recent IF: 8.4; 2023 IF: 5.951 |
|
|
Call Number |
PLASMANT @ plasmant @c:irua:195878 |
Serial |
7254 |
|
Permanent link to this record |