toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Shaw, P.; Kumar, N.; Mumtaz, S.; Lim, J.S.; Jang, J.H.; Kim, D.; Sahu, B.D.; Bogaerts, A.; Choi, E.H. url  doi
openurl 
  Title Evaluation of non-thermal effect of microwave radiation and its mode of action in bacterial cell inactivation Type A1 Journal Article
  Year 2021 Publication Scientific Reports Abbreviated Journal Sci Rep-Uk  
  Volume 11 Issue 1 Pages 14003  
  Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract A growing body of literature has recognized the non-thermal effect of pulsed microwave radiation (PMR) on bacterial systems. However, its mode of action in deactivating bacteria has not yet been extensively investigated. Nevertheless, it is highly important to advance the applications of PMR from simple to complex biological systems. In this study, we first optimized the conditions of the PMR device and we assessed the results by simulations, using ANSYS HFSS (High Frequency Structure Simulator) and a 3D particle-in-cell code for the electron behavior, to provide a better overview of the bacterial cell exposure to microwave radiation. To determine the sensitivity of PMR,<italic>Escherichia coli</italic> and<italic>Staphylococcus aureus</italic>cultures were exposed to PMR (pulse duration: 60 ns, peak frequency: 3.5 GHz) with power density of 17 kW/cm<sup>2</sup>at the free space of sample position, which would induce electric field of 8.0 kV/cm inside the PBS solution of falcon tube in this experiment at 25 °C. At various discharges (D) of microwaves, the colony forming unit curves were analyzed. The highest ratios of viable count reductions were observed when the doses were increased from 20D to 80D, which resulted in an approximate 6 log reduction in <italic>E. coli</italic>and 4 log reduction in<italic>S. aureus.</italic>Moreover, scanning electron microscopy also revealed surface damage in both bacterial strains after PMR exposure. The bacterial inactivation was attributed to the deactivation of oxidation-regulating genes and DNA damage.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000674547300011 Publication Date 2021-07-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited Open Access OpenAccess  
  Notes (up) Department of Biotechnology, Ministry of Science and Technology, India, D.O.NO.BT/HRD/35/02/2006 ; National Research Foundation of Korea, NRF-2016K1A4A3914113 ; This research was supported by the National Research Foundation (NRF) of Korea, funded by the Korean government (MSIT) under the Grant Number NRF-2016K1A4A3914113, and in part by Kwangwoon University, Seoul, Korea, 2021. We also gratefully acknowledge the financial support obtained from Department of Biotechnology (DBT) Ramalingaswami Re-entry Fellowship, India, Grant Number D.O.NO.BT/HRD/35/02/2006. Approved Most recent IF: 4.259  
  Call Number PLASMANT @ plasmant @c:irua:179844 Serial 6800  
Permanent link to this record
 

 
Author Andersen, Ja.; Christensen, Jm.; Østberg, M.; Bogaerts, A.; Jensen, Ad. pdf  url
doi  openurl
  Title Plasma-catalytic dry reforming of methane: Screening of catalytic materials in a coaxial packed-bed DBD reactor Type A1 Journal article
  Year 2020 Publication Chemical Engineering Journal Abbreviated Journal Chem Eng J  
  Volume 397 Issue Pages 125519  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The combination of catalysis with non-thermal plasma is a promising alternative to thermal catalysis. A dielectric-barrier discharge reactor was used to study plasma-catalytic dry reforming of methane at ambient pressure and temperature and a fixed plasma power of 45 W. The effect of different catalytic packing materials was evaluated in terms of conversion, product selectivity, and energy efficiency. The conversion of CO2 (~22%) and CH4 (~33%) were found to be similar in plasma-only and when introducing packing materials in plasma. The main reason is the shorter residence time of the gas due to packing geometry, when compared at identical flow rates. H2, CO, C2-C4 hydrocarbons, and oxygenates were identified in the product gas. High selectivity towards H2 and CO were found for all catalysts and plasma-only, with a H2/CO molar ratio of ~0.9. The lowest syngas selectivity was obtained with Cu/Al2O3 (~66%), which instead, had the highest alcohol selectivity (~3.6%).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000542296100011 Publication Date 2020-05-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 15.1 Times cited Open Access  
  Notes (up) Department of Chemical and Biochemical Engineering, Technical University of Denmark; We thank Haldor Topsoe A/S for providing all the catalytic materials used and the Department of Chemical and Biochemical Engineering, Technical University of Denmark, for funding this project. Approved Most recent IF: 15.1; 2020 IF: 6.216  
  Call Number PLASMANT @ plasmant @c:irua:170613 Serial 6406  
Permanent link to this record
 

 
Author Koelman, P.; Heijkers, S.; Tadayon Mousavi, S.; Graef, W.; Mihailova, D.; Kozak, T.; Bogaerts, A.; van Dijk, J. pdf  url
doi  openurl
  Title A Comprehensive Chemical Model for the Splitting of CO2in Non-Equilibrium Plasmas: A Comprehensive Chemical Model for CO2Splitting Type A1 Journal article
  Year 2017 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym  
  Volume 14 Issue 14 Pages 1600155  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract An extensive CO2 plasmamodel is presented that is relevant for the production of ‘‘solar fuels.’’ It is based on reaction rate coefficients fromrigorously reviewed literature, and is augmented with reactionrate coefficients that are obtained fromscaling laws.The input data set,which is suitable for usage with the plasma simulation software Plasimo (https://plasimo.phys.tue.nl/), is available via the Plasimo and publisher’s websites.1 The correctness of this model implementation has been established by independent ZDPlasKin implementation (http://www.zdplaskin.

laplace.univ-tlse.fr/), to verify that the results agree. Results of these ‘‘global models’’ are presented for a DBD plasma reactor.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000403074000009 Publication Date 2016-10-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1612-8850 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.846 Times cited 21 Open Access Not_Open_Access  
  Notes (up) Dutch Technology Foundation STW; Ministerie van Economische Zaken; Hercules Foundation; Acknowledgements: This research is supported by the Dutch Technology Foundation STW, which is part of the Netherlands Organization for Scientific Research (NWO), and which is partly funded by the Ministry of Economic Affairs. Furthermore, we acknowledge financial support from the IAP/7 (Inter-university Attraction Pole) program PSI-Physical Chemistry of Plasma- Surface Interactions by the Belgian Federal Office for Science Policy (BELSPO). Part of the calculations were carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. Approved Most recent IF: 2.846  
  Call Number PLASMANT @ plasmant @ c:irua:142643 Serial 4565  
Permanent link to this record
 

 
Author Neyts, E.C.; Ostrikov, K.K.; Sunkara, M.K.; Bogaerts, A. pdf  url
doi  openurl
  Title Plasma Catalysis: Synergistic Effects at the Nanoscale Type A1 Journal article
  Year 2015 Publication Chemical reviews Abbreviated Journal Chem Rev  
  Volume 115 Issue 115 Pages 13408-13446  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Thermal-catalytic gas processing is integral to many current industrial processes. Ever-increasing demands on conversion and energy efficiencies are a strong driving force for the development of alternative approaches. Similarly, synthesis of several functional materials (such as nanowires and nanotubes) demands special processing conditions. Plasma catalysis provides such an alternative, where the catalytic process is complemented by the use of plasmas that activate the source gas. This combination is often observed to result in a synergy between plasma and catalyst. This Review introduces the current state-of-the-art in plasma catalysis, including numerous examples where plasma catalysis has demonstrated its benefits or shows future potential, including CO2 conversion, hydrocarbon reforming, synthesis of nanomaterials, ammonia production, and abatement of toxic waste gases. The underlying mechanisms governing these applications, as resulting from the interaction between the plasma and the catalyst, render the process highly complex, and little is known about the factors leading to the often-observed synergy. This Review critically examines the catalytic mechanisms relevant to each specific application.  
  Address Department of Chemistry, Research Group PLASMANT, Universiteit Antwerpen , Universiteitsplein 1, 2610 Wilrijk-Antwerp, Belgium  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000367563000006 Publication Date 2015-11-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0009-2665 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 47.928 Times cited 204 Open Access  
  Notes (up) ECN and AB gratefully acknowledge financial support from the Fund of Scientific Research Flanders (FWO), Belgium, Grant Number G.0217.14N. KO acknowledges partial support by the Australian Research Council and CSIRO’s OCE Science Leaders Program. MKS acknowledges partial support from US National Science Foundation through grants DMS 1125909 and EPSCoR 1355448 and also PhD students Babajide Ajayi, Apolo Nambo and Maria Carreon for their help. Approved Most recent IF: 47.928; 2015 IF: 46.568  
  Call Number c:irua:130001 Serial 3993  
Permanent link to this record
 

 
Author Tennyson, J.; Mohr, S.; Hanicinec, M.; Dzarasova, A.; Smith, C.; Waddington, S.; Liu, B.; Alves, L.L.; Bartschat, K.; Bogaerts, A.; Engelmann, S.U.; Gans, T.; Gibson, A.R.; Hamaguchi, S.; Hamilton, K.R.; Hill, C.; O’Connell, D.; Rauf, S.; van ’t Veer, K.; Zatsarinny, O. url  doi
openurl 
  Title The 2021 release of the Quantemol database (QDB) of plasma chemistries and reactions Type A1 Journal article
  Year 2022 Publication Plasma Sources Science & Technology Abbreviated Journal Plasma Sources Sci T  
  Volume 31 Issue 9 Pages 095020  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The Quantemol database (QDB) provides cross sections and rates of processes important for plasma models; heavy particle collisions (chemical reactions) and electron collision processes are considered. The current version of QDB has data on 28 917 processes between 2485 distinct species plus data for surface processes. These data are available via a web interface or can be delivered directly to plasma models using an application program interface; data are available in formats suitable for direct input into a variety of popular plasma modeling codes including HPEM, COMSOL, ChemKIN, CFD-ACE+, and VisGlow. QDB provides ready assembled plasma chemistries plus the ability to build bespoke chemistries. The database also provides a Boltzmann solver for electron dynamics and a zero-dimensional model. Thesedevelopments, use cases involving O<sub>2</sub>, Ar/NF<sub>3</sub>, Ar/NF<sub>3</sub>/O<sub>2</sub>, and He/H<sub>2</sub>O/O<sub>2</sub>chemistries, and plans for the future are presented.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000895762200001 Publication Date 2022-09-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0963-0252 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.8 Times cited Open Access OpenAccess  
  Notes (up) Engineering and Physical Sciences Research Council, EP/N509577/1 ; Fundação para a Ciência e a Tecnologia, UIDB/50010/2020 ; Science and Technology Facilities Council, ST/K004069/1 ; National Science Foundation, OAC-1834740 ; Approved Most recent IF: 3.8  
  Call Number PLASMANT @ plasmant @c:irua:192845 Serial 7245  
Permanent link to this record
 

 
Author Gorbanev, Y.; Privat-Maldonado, A.; Bogaerts, A. pdf  url
doi  openurl
  Title Analysis of Short-Lived Reactive Species in Plasma–Air–Water Systems: The Dos and the Do Nots Type A1 Journal Article
  Year 2018 Publication Analytical Chemistry Abbreviated Journal Anal Chem  
  Volume 90 Issue 22 Pages 13151-13158  
  Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract This Feature addresses the analysis of the reactive species generated by nonthermal atmospheric

pressure plasmas, which are widely employed in industrial and biomedical research, as well as first

clinical applications. We summarize the progress in detection of plasma-generated short-lived

reactive oxygen and nitrogen species in aqueous solutions, discuss the potential and limitations of

various analytical methods in plasma−liquid systems, and provide an outlook on the possible future

research goals in development of short-lived reactive species analysis methods for a general

nonspecialist audience.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000451246100002 Publication Date 2018-11-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.32 Times cited 17 Open Access Not_Open_Access  
  Notes (up) European Commission, 743151 ; This work was supported by the European Marie Sklodowska- Curie Individual Fellowship within Horizon2020 (“LTPAM”, Grant No. 743151). Approved Most recent IF: 6.32  
  Call Number PLASMANT @ plasmant @c:irua:156301 Serial 5152  
Permanent link to this record
 

 
Author Uytdenhouwen, Y.; Bal, Km.; Michielsen, I.; Neyts, Ec.; Meynen, V.; Cool, P.; Bogaerts, A. pdf  url
doi  openurl
  Title How process parameters and packing materials tune chemical equilibrium and kinetics in plasma-based CO2 conversion Type A1 Journal article
  Year 2019 Publication Chemical engineering journal Abbreviated Journal Chem Eng J  
  Volume 372 Issue Pages 1253-1264  
  Keywords A1 Journal article; Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma (catalysis) reactors are increasingly being used for gas-based chemical conversions, providing an alternative method of energy delivery to the molecules. In this work we explore whether classical concepts such as

equilibrium constants, (overall) rate coefficients, and catalysis exist under plasma conditions. We specifically

investigate the existence of a so-called partial chemical equilibrium (PCE), and how process parameters and

packing properties influence this equilibrium, as well as the overall apparent rate coefficient, for CO2 splitting in

a DBD plasma reactor. The results show that a PCE can be reached, and that the position of the equilibrium, in

combination with the rate coefficient, greatly depends on the reactor parameters and operating conditions (i.e.,

power, pressure, and gap size). A higher power, higher pressure, or smaller gap size enhance both the equilibrium constant and the rate coefficient, although they cannot be independently tuned. Inserting a packing

material (non-porous SiO2 and ZrO2 spheres) in the reactor reveals interesting gap/material effects, where the

type of material dictates the position of the equilibrium and the rate (inhibition) independently. As a result, no

apparent synergistic effect or plasma-catalytic behaviour was observed for the non-porous packing materials

studied in this reaction. Within the investigated parameters, equilibrium conversions were obtained between 23

and 71%, while the rate coefficient varied between 0.027 s−1 and 0.17 s−1. This method of analysis can provide

a more fundamental insight in the overall reaction kinetics of (catalytic) plasma-based gas conversion, in order

to be able to distinguish plasma effects from true catalytic enhancement.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000471670400116 Publication Date 2019-05-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.216 Times cited 3 Open Access Not_Open_Access: Available from 05.05.2021  
  Notes (up) European Fund for Regional Development; FWOFWO, G.0254.14N ; University of Antwerp; FWO-FlandersFWO-Flanders, 11V8915N ; The authors acknowledge financial support from the European Fund for Regional Development through the cross-border collaborative Interreg V program Flanders-the Netherlands (project EnOp), the Fund for Scientific Research (FWO; Grant Number: G.0254.14N), a TOP-BOF project and an IOF-SBO (SynCO2Chem) project from the University of Antwerp. K. M. B. was funded as a PhD fellow (aspirant) of the FWOFlanders (Fund for Scientific Research-Flanders), Grant 11V8915N. Approved Most recent IF: 6.216  
  Call Number PLASMANT @ plasmant @UA @ admin @ c:irua:159979 Serial 5171  
Permanent link to this record
 

 
Author Attri, P.; Park, J.-H.; De Backer, J.; Kim, M.; Yun, J.-H.; Heo, Y.; Dewilde, S.; Shiratani, M.; Choi, E.H.; Lee, W.; Bogaerts, A. pdf  url
doi  openurl
  Title Structural modification of NADPH oxidase activator (Noxa 1) by oxidative stress: An experimental and computational study Type A1 Journal article
  Year 2020 Publication International Journal Of Biological Macromolecules Abbreviated Journal Int J Biol Macromol  
  Volume 163 Issue Pages 2405-2414  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract NADPH oxidases 1 (NOX1) derived reactive oxygen species (ROS) play an important role in the progression of cancer through signaling pathways. Therefore, in this paper, we demonstrate the effect of cold atmospheric plasma (CAP) on the structural changes of Noxa1 SH3 protein, one of the regulatory subunits of NOX1. For this purpose, firstly we purified the Noxa1 SH3 protein and analyzed the structure using X-ray crystallography, and subsequently, we treated the protein with two types of CAP reactors such as pulsed dielectric barrier discharge (DBD) and Soft Jet for different time intervals. The structural deformation of Noxa1 SH3 protein was analyzed by various experimental methods (circular dichroism, fluorescence, and NMR spectroscopy) and by MD simulations. Additionally, we demonstrate the effect of CAP (DBD and Soft Jet) on the viability and expression of NOX1 in A375 cancer cells. Our results are useful to understand the structural modification/oxidation occur in protein due to reactive oxygen and nitrogen (RONS) species generated by CAP.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000579839600233 Publication Date 2020-09-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0141-8130 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.2 Times cited Open Access  
  Notes (up) European Marie Skłodowska-Curie Individual Fellowship, 743546 ; JSPS, 20K14454 ; National Research Foundation of Korea, 2019M3A9F6021810 NRF-2017M3A9F6029753 NRF-2019M3E5D6063903 NRF-2016R1A6A3A04010213 ; Brain Korea 21; MSIT, NRF-2016K1A4A3914113 ; Hercules Foundation; Flemish Government; UA; We gratefully acknowledge the European Marie SkłodowskaCurie Individual Fellowship “Anticancer-PAM” within Horizon 2020 (grant number 743546). This work was also supported by JSPS-KAKENHI grant number 20K14454. Additionally, work was supported by several grants (2019M3A9F6021810, NRF2017M3A9F6029753, NRF-2019M3E5D6063903 to W. Lee), Basic Science Research Program (NRF-2016R1A6A3A04010213 to J.H. Yun) through the National Research Foundation of Korea and in part by the Brain Korea 21 (BK21) PLUS program (J.H.P.). EHC is thankful to National Research Foundation (NRF) of Korea, funded by the Korea government (MSIT) under the grant number (NRF2016K1A4A3914113). The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. Approved Most recent IF: 8.2; 2020 IF: 3.671  
  Call Number PLASMANT @ plasmant @c:irua:172451 Serial 6419  
Permanent link to this record
 

 
Author Vanmeert, M.; Razzokov, J.; Mirza, M.U.; Weeks, S.D.; Schepers, G.; Bogaerts, A.; Rozenski, J.; Froeyen, M.; Herdewijn, P.; Pinheiro, V.B.; Lescrinier, E. url  doi
openurl 
  Title Rational design of an XNA ligase through docking of unbound nucleic acids to toroidal proteins Type A1 Journal article
  Year 2019 Publication Nucleic acids research Abbreviated Journal Nucleic Acids Res  
  Volume 47 Issue 13 Pages 7130-7142  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Xenobiotic nucleic acids (XNA) are nucleic acid analogues not present in nature that can be used for the storage of genetic information. In vivo XNA applications could be developed into novel biocontainment strategies, but are currently limited by the challenge of developing XNA processing enzymes such as polymerases, ligases and nucleases. Here, we present a structure-guided modelling-based strategy for the rational design of those enzymes essential for the development of XNA molecular biology. Docking of protein domains to unbound double-stranded nucleic acids is used to generate a first approximation of the extensive interaction of nucleic acid processing enzymes with their substrate. Molecular dynamics is used to optimise that prediction allowing, for the first time, the accurate prediction of how proteins that form toroidal complexes with nucleic acids interact with their substrate. Using the Chlorella virus DNA ligase as a proof of principle, we recapitulate the ligase's substrate specificity and successfully predict how to convert it into an XNA-templated XNA ligase.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000490556600047 Publication Date 2019-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0305-1048 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 10.162 Times cited 1 Open Access  
  Notes (up) European Research Council, FP7/2007-2013 ERC-2012-ADG 20120216/320683 ; KU Leuven, OT/14/128 ; Biotechnology and Biosciences Research Council, BB/N01023X/1 BB/N010221/1 ; Authors are grateful to Prof. Dr A.M.J.J. (Alexandre) Bonvin from the University of Utrecht and the WeNMR institute for his expert contribution. We have greatly benefited from discussions and help from numerous postdocs over the years (in particular, Dr E. Groaz, Dr E. Eremeeva, Dr J. Masschelein, Dr S. Xiaoping and Dr M. Renders) as well as graduate student D. Kestemont and undergraduate student M. Abdel Fattah Ismail. We express our gratitude to L. Margamuljana for helpful discussions and excellent technical assistance on in vitro experiments. Approved Most recent IF: 10.162  
  Call Number PLASMANT @ plasmant @c:irua:162105 Serial 5359  
Permanent link to this record
 

 
Author Osorio-Tejada, J.; van't Veer, K.; Long, N.V.D.; Tran, N.N.; Fulcheri, L.; Patil, B.S.; Bogaerts, A.; Hessel, V. url  doi
openurl 
  Title Sustainability analysis of methane-to-hydrogen-to-ammonia conversion by integration of high-temperature plasma and non-thermal plasma processes Type A1 Journal article
  Year 2022 Publication Energy Conversion And Management Abbreviated Journal Energ Convers Manage  
  Volume 269 Issue Pages 116095  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The Covid era has made us aware of the need for resilient, self-sufficient, and local production. We are likely willing to pay an extra price for that quality. Ammonia (NH3) synthesis accounts for 2 % of global energy production and is an important point of attention for the development of green energy technologies. Therefore, we propose a thermally integrated process for H2 production and NH3 synthesis using plasma technology, and we evaluate its techno-economic performance and CO2 footprint by life cycle assessment (LCA). The key is to integrate energy-wise a high-temperature plasma (HTP) process, with a (low-temperature) non-thermal plasma (NTP) process and to envision their joint economic potential. This particularly means raising the temperature of the NTP process, which is typically below 100 ◦ C, taking advantage of the heat released from the HTP process. For that purpose, we proposed the integrated process and conducted chemical kinetics simulations in the NTP section to determine the thermodynamically feasible operating window of this novel combined plasma process. The results suggest that an NH3 yield of 2.2 mol% can be attained at 302 ◦ C at an energy yield of 1.1 g NH3/kWh. Cost calculations show that the economic performance is far from commercial, mainly because of the too low energy yield of the NTP process. However, when we base our costs on the best literature value and plausible future scenarios for the NTP energy yield, we reach a cost prediction below 452 $/tonne NH3, which is competitive with conventional small-scale Haber-Bosch NH3 synthesis for distributed production. In addition, we demonstrate that biogas can be used as feed, thus allowing the proposed integrated reactor concept to be part of a biogas-to-ammonia circular concept. Moreover, by LCA we demonstrate the environmental benefits of the pro­posed plant, which could cut by half the carbon emissions when supplied by photovoltaic electricity, and even invert the carbon balance when supplied by wind power due to the avoided emissions of the carbon black credits.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000880662100007 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0196-8904 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 10.4 Times cited Open Access OpenAccess  
  Notes (up) European Research Council; European Commission, 810182 ; The authors acknowledge support from the ERC Synergy Grant “Surface-COnfined fast modulated Plasma for process and Energy intensification” (SCOPE), from the European Commission, with Grant No. 810182. Approved Most recent IF: 10.4  
  Call Number PLASMANT @ plasmant @c:irua:191785 Serial 7103  
Permanent link to this record
 

 
Author Belov, I.; Vanneste, J.; Aghaee, M.; Paulussen, S.; Bogaerts, A. pdf  url
doi  openurl
  Title Synthesis of Micro- and Nanomaterials in CO2and CO Dielectric Barrier Discharges: Synthesis of Micro- and Nanomaterials… Type A1 Journal article
  Year 2017 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym  
  Volume 14 Issue 14 Pages 1600065  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Dielectric Barrier Discharges operating in CO and CO2 form solid products at atmospheric pressure. The main differences between both plasmas and their deposits were analyzed, at similar energy input. GC measurements revealed a mixture of CO2, CO, and O2 in the CO2 DBD exhaust, while no O2 was found in the CO plasma. A coating of nanoparticles composed of Fe, O, and C was produced by the CO2 discharge, whereas, a microscopic dendrite-like carbon structure was formed in the CO plasma. Fe3O4 and Fe crystalline phases were found in the CO2 sample. The CO

deposition was characterized as an amorphous structure, close to polymeric CO (p-CO). Interestingly, p-CO is not formed in the CO2 plasma, in spite of the significant amounts of CO produced (up to 30% in the reactor exhaust).
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000397476000007 Publication Date 2016-07-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1612-8850 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.846 Times cited 10 Open Access Not_Open_Access  
  Notes (up) European Union Seventh Framework Programme FP7-PEOPLE-2013-ITN, 606889 ; Approved Most recent IF: 2.846  
  Call Number PLASMANT @ plasmant @ c:irua:141759 Serial 4487  
Permanent link to this record
 

 
Author van ‘t Veer, K.; van Alphen, S.; Remy, A.; Gorbanev, Y.; De Geyter, N.; Snyders, R.; Reniers, F.; Bogaerts, A. pdf  url
doi  openurl
  Title Spatially and temporally non-uniform plasmas: microdischarges from the perspective of molecules in a packed bed plasma reactor Type A1 Journal article
  Year 2021 Publication Journal Of Physics D-Applied Physics Abbreviated Journal J Phys D Appl Phys  
  Volume 54 Issue 17 Pages 174002  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Dielectric barrier discharges (DBDs) typically operate in the filamentary regime and thus exhibit great spatial and temporal non-uniformity. In order to optimize DBDs for various applications, such as in plasma catalysis, more fundamental insight is needed. Here, we consider how the millions of microdischarges, characteristic for a DBD, influence individual gas molecules. We use a Monte Carlo approach to determine the number of microdischarges to which a single molecule would be exposed, by means of particle tracing simulations through a full-scale packed bed DBD reactor, as well as an empty DBD reactor. We find that the fraction of microdischarges to which the molecules are exposed can be approximated as the microdischarge volume over the entire reactor gas volume. The use of this concept provides good agreement between a plasma-catalytic kinetics model and experiments for plasma-catalytic NH3 synthesis. We also show that the concept of the fraction of microdischarges indicates the efficiency by which the plasma power is transferred to the gas molecules. This generalised concept is also applicable for other spatially and temporally non-uniform plasmas.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000618776000001 Publication Date 2021-04-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited Open Access OpenAccess  
  Notes (up) Excellence of Science FWO-FNRS project, FWO grant ID GoF9618n ; Flemish Government, project P2C (HBC.2019.0108) ; H2020 European Research Council, grant agreement No 810182 – SCOPE ERC Synergy pr ; This research was supported by the Excellence of Science FWO-FNRS project (FWO Grant ID GoF9618n, EOS ID 30505023), the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No 810182—SCOPE ERC Synergy project) and by the Flemish Government through the Moonshot cSBO project P2C (HBC. 2019.0108). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. The authors would also like to thank Hamid Ahmadi Eshtehardi for discussions on the plasma-kinetic DBD model and Yannick Engelmann for discussions on the surface kinetics model. Approved Most recent IF: 2.588  
  Call Number PLASMANT @ plasmant @c:irua:175878 Serial 6674  
Permanent link to this record
 

 
Author Huygh, S.; Bogaerts, A.; Bal, K.M.; Neyts, E.C. pdf  url
doi  openurl
  Title High Coke Resistance of a TiO2Anatase (001) Catalyst Surface during Dry Reforming of Methane Type A1 Journal Article
  Year 2018 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C  
  Volume 122 Issue 17 Pages 9389-9396  
  Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract The resistance of a TiO2 anatase (001) surface to coke formation was studied in the context of dry reforming of methane using density functional theory (DFT) calculations. As carbon atoms act as precursors for coke formation, the resistance to coke formation can be measured by the carbon coverage of the surface. This is related to the stability of different CHx (x = 0−3) species and their rate of hydrogenation and dehydrogenation on the TiO2 surface. Therefore, we studied the reaction mechanisms and their corresponding rates as a function of the temperature for the dehydrogenation of the species on the surface. We found that the stabilities of C and CH are significantly lower than those of CH3 and CH2. The hydrogenation rates of the different species are significantly higher than the dehydrogenation rates in a temperature range of 300−1000 K. Furthermore, we found that dehydrogenation of CH3, CH2, and CH will only occur at appreciable rates starting from 600, 900, and 900 K, respectively. On the basis of these results, it is clear that the anatase (001) surface has a high coke resistance, and it is thus not likely that the surface will become poisoned by coke during dry reforming of methane. As the rate limiting step in dry reforming is the dissociative adsorption of CH4, we studied an alternative approach to thermal catalysis. We found that the temperature threshold for dry reforming is at least 700 K. This threshold temperature may be lowered by the use of plasma-catalysis, where the appreciable rates of adsorption of plasma-generated CHx radicals result in bypassing the rate limiting step of the reaction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000431723700014 Publication Date 2018-05-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 1 Open Access OpenAccess  
  Notes (up) Federaal Wetenschapsbeleid, IAP/7 ; Fonds Wetenschappelijk Onderzoek, G.0217.14N ; Onderzoeksfonds, Universiteit Antwerpen, 32249 ; Approved Most recent IF: 4.536  
  Call Number PLASMANT @ plasmant @c:irua:151529c:irua:152816 Serial 5000  
Permanent link to this record
 

 
Author Heijkers, S.; Bogaerts, A. pdf  url
doi  openurl
  Title CO2Conversion in a Gliding Arc Plasmatron: Elucidating the Chemistry through Kinetic Modeling Type A1 Journal article
  Year 2017 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 121 Issue 41 Pages 22644-22655  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract By means of chemical kinetics modeling, it is possible to elucidate the main dissociation mechanisms of CO2 in a gliding arc plasmatron (GAP). We obtain good agreement between the calculated and experimental conversions and energy efficiencies, indicating that the model can indeed be used to study the underlying mechanisms. The calculations predict that vibration-induced dissociation is the main dissociation mechanism of CO2, but it occurs mainly from the lowest vibrational levels because of fast thermalization of the vibrational distribution. Based on these findings, we propose ideas for improving the performance of the GAP, but testing of these ideas in the simulations reveals that they do not always lead to significant enhancement, because of other side effects, thus illustrating the complexity of the process. Nevertheless, the model allows more insight into the underlying mechanisms to be obtained and limitations to be identified.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000413617900007 Publication Date 2017-10-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 6 Open Access OpenAccess  
  Notes (up) Federaal Wetenschapsbeleid, IAP/7 ; Fonds Wetenschappelijk Onderzoek, G.0383.16N ; Approved Most recent IF: 4.536  
  Call Number PLASMANT @ plasmant @c:irua:147436 Serial 4801  
Permanent link to this record
 

 
Author Wang, W.; Snoeckx, R.; Zhang, X.; Cha, M.S.; Bogaerts, A. pdf  url
doi  openurl
  Title Modeling Plasma-based CO2and CH4Conversion in Mixtures with N2, O2, and H2O: The Bigger Plasma Chemistry Picture Type A1 Journal article
  Year 2018 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 122 Issue 16 Pages 8704-8723  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Because of the unique properties of plasma technology, its use in gas conversion applications is gaining significant interest around the globe. Plasma-based CO2 and CH4 conversion has become a major research area. Many investigations have already been performed regarding the single-component gases, that is, CO2 splitting and CH4 reforming, as well as for two-component mixtures, that is, dry reforming of methane

(CO2/CH4), partial oxidation of methane (CH4/O2), artificial photosynthesis (CO2/H2O), CO2 hydrogenation (CO2/H2), and even first steps toward the influence of N2 impurities have been taken, that is, CO2/N2 and CH4/N2. In this Feature Article we briefly discuss the advances made in literature for these different steps from a plasma chemistry modeling point of view. Subsequently, we present a comprehensive plasma chemistry set, combining the knowledge gathered in this field so far and supported with extensive experimental data. This set can be used for chemical kinetics plasma modeling for all possible combinations of CO2, CH4, N2, O2, and H2O to investigate the bigger picture of the underlying plasmachemical pathways for these mixtures in a dielectric barrier discharge plasma. This is extremely valuable

for the optimization of existing plasma-based CO2 conversion and CH4 reforming processes as well as for investigating the influence of N2, O2, and H2O on these processes and even to support plasma-based multireforming processes.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000431151200002 Publication Date 2018-04-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 28 Open Access OpenAccess  
  Notes (up) Federaal Wetenschapsbeleid, IAP/7 ; King Abdullah University of Science and Technology; H2020 Marie Sklodowska-Curie Actions, 657304 ; Fonds Wetenschappelijk Onderzoek, G.0217.14N G.0383.16N G.0254.14N ; Approved Most recent IF: 4.536  
  Call Number PLASMANT @ plasmant @c:irua:150969 Serial 4922  
Permanent link to this record
 

 
Author Berthelot, A.; Bogaerts, A. pdf  url
doi  openurl
  Title Modeling of CO2Splitting in a Microwave Plasma: How to Improve the Conversion and Energy Efficiency Type A1 Journal article
  Year 2017 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 121 Issue 121 Pages 8236-8251  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Microwave plasmas are one of the most promising techniques for CO2 conversion into value-added chemicals and fuels since they are very energy efficient. Nevertheless, experiments show that this high energy efficiency is only reached at low pressures and significantly drops toward atmospheric pressure, which is a clear limitation for industrial applications. In this paper, we use a zerodimensional reaction kinetics model to simulate a CO2 microwave plasma in a pressure range from 50 mbar to 1 bar, in order to evaluate the reasons for this decrease in energy efficiency at atmospheric pressure. The code includes a detailed description of the vibrational kinetics of CO2, CO, and O2 as well as the energy exchanges between them because the vibrational kinetics is known to be crucial for energy efficient CO2 splitting. First, we use a self-consistent gas temperature calculation in order to assess the key performance indicators for CO2 splitting, i.e., the CO2 conversion and corresponding energy efficiency. Our results indicate that lower pressures and higher power densities lead to more vibrational excitation, which is beneficial for the conversion. We also demonstrate the key role of the gas temperature. The model predicts the highest conversion and energy efficiencies at pressures around 300 mbar, which is in agreement with experiments from the literature. We also show the beneficial aspect of fast gas cooling in the afterglow at high pressure. In a second step, we study in more detail the effects of pressure, gas temperature, and power density on the vibrational distribution function and on the dissociation and recombination mechanisms of CO2, which define the CO2 splitting efficiency. This study allows us to identify the limiting factors of CO2 conversion and to propose potential solutions to improve the process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000400039300002 Publication Date 2017-04-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 47 Open Access OpenAccess  
  Notes (up) Federaal Wetenschapsbeleid; Approved Most recent IF: 4.536  
  Call Number PLASMANT @ plasmant @ c:irua:142809 Serial 4567  
Permanent link to this record
 

 
Author Georgieva, V.; Berthelot, A.; Silva, T.; Kolev, S.; Graef, W.; Britun, N.; Chen, G.; van der Mullen, J.; Godfroid, T.; Mihailova, D.; van Dijk, J.; Snyders, R.; Bogaerts, A.; Delplancke-Ogletree, M.-P. pdf  url
doi  openurl
  Title Understanding Microwave Surface-Wave Sustained Plasmas at Intermediate Pressure by 2D Modeling and Experiments: Understanding Microwave Surface-Wave Sustained Plasmas … Type A1 Journal article
  Year 2017 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym  
  Volume 14 Issue 14 Pages 1600185  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract An Ar plasma sustained by a surfaguide wave launcher is investigated at intermediate pressure (200–2667 Pa). Two 2D self-consistent models (quasi-neutral and plasma bulk-sheath) are developed and benchmarked. The complete set of electromagnetic and fluid equations and the boundary conditions are presented. The transformation of fluid equations from a local reference frame, that is, moving with plasma or when the gas flow is zero, to a laboratory reference frame, that is,

accounting for the gas flow, is discussed. The pressure range is extended down to 80 Pa by experimental measurements. The electron temperature decreases with pressure. The electron density depends linearly on power, and changes its behavior with pressure depending on the product of pressure and radial plasma size.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000403074000012 Publication Date 2016-11-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1612-8850 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.846 Times cited 8 Open Access Not_Open_Access  
  Notes (up) Federaal Wetenschapsbeleid; European Marie Curie RAPID project; European Union's Seventh Framework Programme, 606889 ; Approved Most recent IF: 2.846  
  Call Number PLASMANT @ plasmant @ c:irua:142807 Serial 4568  
Permanent link to this record
 

 
Author Ramakers, M.; Trenchev, G.; Heijkers, S.; Wang, W.; Bogaerts, A. pdf  url
doi  openurl
  Title Gliding Arc Plasmatron: Providing an Alternative Method for Carbon Dioxide Conversion Type A1 Journal article
  Year 2017 Publication Chemsuschem Abbreviated Journal Chemsuschem  
  Volume 10 Issue 10 Pages 2642-2652  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Low-temperature plasmas are gaining a lot of interest for environmental and energy applications. A large research field in these applications is the conversion of CO2 into chemicals and fuels. Since CO2 is a very stable molecule, a key performance indicator for the research on plasma-based CO2 conversion is the energy efficiency. Until now, the energy efficiency in atmospheric plasma reactors is quite low, and therefore we employ here a novel type of plasma reactor, the gliding arc plasmatron (GAP). This paper provides a detailed experimental and computational study of the CO2 conversion, as well as the energy cost and efficiency in a GAP. A comparison with thermal conversion, other plasma types and other novel CO2 conversion technologies is made to find out whether this novel plasma reactor can provide a significant contribution to the much-needed efficient conversion of CO2. From these comparisons it becomes evident that our results are less than a factor of two away from being cost competitive and already outperform several other new technologies. Furthermore, we indicate how the performance of the GAP can still be improved by further exploiting its non-equilibrium character. Hence, it is clear that the GAP is very promising for CO2 conversion.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000403934400014 Publication Date 2017-05-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1864-5631 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.226 Times cited 42 Open Access OpenAccess  
  Notes (up) Federaal Wetenschapsbeleid; Fonds Wetenschappelijk Onderzoek, G.0383.16N 11U5316N ; Horizon 2020, 657304 ; Approved Most recent IF: 7.226  
  Call Number PLASMANT @ plasmant @ c:irua:144184 Serial 4616  
Permanent link to this record
 

 
Author De Bie, C.; van Dijk, J.; Bogaerts, A. pdf  url
doi  openurl
  Title CO2Hydrogenation in a Dielectric Barrier Discharge Plasma Revealed Type A1 Journal article
  Year 2016 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 120 Issue 120 Pages 25210-25224  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The hydrogenation of carbon dioxide in a dielectric barrier discharge plasma is studied with a one-dimensional fluid model. The spatially averaged densities of the most important end products formed in the CO2/H2 mixture are determined as a function of the initial gas mixing ratio. CO and H2O are found to be present at the highest densities and to a lower content also CH4, C2H6, CH2O, CH3OH, O2, and some other higher hydrocarbons and oxygenates. The main underlying reaction

pathways for the conversion of the inlet gases and the formation of CO, CH4, CH2O, and CH3OH are pointed out for various gas mixing ratios. The CO2 conversion and the production of value added products is found to be quite low, also in comparison to a CO2/CH4 mixture, and this can be explained by the model.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000387737900007 Publication Date 2016-11-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 16 Open Access  
  Notes (up) Federaal Wetenschapsbeleid; Fonds Wetenschappelijk Onderzoek; Approved Most recent IF: 4.536  
  Call Number PLASMANT @ plasmant @ c:irua:140082 c:irua:139167 Serial 4414  
Permanent link to this record
 

 
Author Privat-Maldonado, A.; Bengtson, C.; Razzokov, J.; Smits, E.; Bogaerts, A. url  doi
openurl 
  Title Modifying the Tumour Microenvironment: Challenges and Future Perspectives for Anticancer Plasma Treatments Type A1 Journal article
  Year 2019 Publication Cancers Abbreviated Journal Cancers  
  Volume 11 Issue 12 Pages 1920  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Center for Oncological Research (CORE)  
  Abstract Tumours are complex systems formed by cellular (malignant, immune, and endothelial cells, fibroblasts) and acellular components (extracellular matrix (ECM) constituents and secreted factors). A close interplay between these factors, collectively called the tumour microenvironment, is required to respond appropriately to external cues and to determine the treatment outcome. Cold plasma (here referred as ‘plasma’) is an emerging anticancer technology that generates a unique cocktail of reactive oxygen and nitrogen species to eliminate cancerous cells via multiple mechanisms of action. While plasma is currently regarded as a local therapy, it can also modulate the mechanisms of cell-to-cell and cell-to-ECM communication, which could facilitate the propagation of its effect in tissue and distant sites. However, it is still largely unknown how the physical interactions occurring between cells and/or the ECM in the tumour microenvironment affect the plasma therapy outcome. In this review, we discuss the effect of plasma on cell-to-cell and cell-to-ECM communication in the context of the tumour microenvironment and suggest new avenues of research to advance our knowledge in the field. Furthermore, we revise the relevant state-of-the-art in three-dimensional in vitro models that could be used to analyse cell-to-cell and cell-to-ECM communication and further strengthen our understanding of the effect of plasma in solid tumours.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000507382100097 Publication Date 2019-12-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2072-6694 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes (up) Figure 4 was created using resources from the ‘Mind the Graph’ platform, free trial version. Spheroid image obtained in collaboration with Sander Bekeschus (INP Greifswald, Germany); organoid image kindly provided by Christophe Deben (Center for Oncological Research, University of Antwerp, Belgium). Approved Most recent IF: NA  
  Call Number PLASMANT @ plasmant @c:irua:164892 Serial 5437  
Permanent link to this record
 

 
Author Shirazi, M.; Bogaerts, A.; Neyts, E.C. pdf  url
doi  openurl
  Title A DFT study of H-dissolution into the bulk of a crystalline Ni(111) surface: a chemical identifier for the reaction kinetics Type A1 Journal article
  Year 2017 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 19 Issue 19 Pages 19150-19158  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this study, we investigated the diffusion of H-atoms to the subsurface and their further diffusion into the bulk of a Ni(111) crystal by means of density functional theory calculations in the context of thermal and plasma-assisted catalysis. The H-atoms at the surface can originate from the dissociative adsorption of H2 or CH4 molecules, determining the surface H-coverage. When a threshold H-coverage is passed, corresponding to 1.00 ML for the crystalline Ni(111) surface, the surface-bound H-atoms start to diffuse to the subsurface. A similar threshold coverage is observed for the interstitial H-coverage. Once the interstitial sites are filled up with a coverage above 1.00 ML of H, dissolution of interstitial H-atoms to the layer below the interstitial sites will be initiated. Hence, by applying a high pressure or inducing a reactive plasma and high temperature, increasing the H-flux to the surface, a large amount of hydrogen can diffuse in a crystalline metal like Ni and can be absorbed. The formation of metal hydride may modify the entire reaction kinetics of the system. Equivalently, the H-atoms in the bulk can easily go back to the surface and release a large amount of heat. In a plasma process, H-atoms are formed in the plasma, and therefore the energy barrier for dissociative adsorption is dismissed, thus allowing achievement of the threshold coverage without applying a high pressure as in a thermal process. As a result, depending on the crystal plane and type of metal, a large number of H-atoms can be dissolved (absorbed) in the metal catalyst, explaining the high efficiency of plasma-assisted catalytic reactions. Here, the mechanism of H-dissolution is established as a chemical identifier for the investigation of the reaction kinetics of a chemical process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000406334300034 Publication Date 2017-06-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 10 Open Access OpenAccess  
  Notes (up) Financial support from the Reactive Atmospheric Plasma processIng – eDucation (RAPID) network, through the EU 7th Framework Programme (grant agreement no. 606889), is gratefully acknowledged. The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government department (EWI) and the Universiteit Antwerpen. Approved Most recent IF: 4.123  
  Call Number PLASMANT @ plasmant @ c:irua:144794 Serial 4633  
Permanent link to this record
 

 
Author Shirazi, M.; Neyts, E.C.; Bogaerts, A. pdf  url
doi  openurl
  Title DFT study of Ni-catalyzed plasma dry reforming of methane Type A1 Journal article
  Year 2017 Publication Applied catalysis : B : environmental Abbreviated Journal Appl Catal B-Environ  
  Volume 205 Issue 205 Pages 605-614  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract tWe investigated the plasma-assisted catalytic reactions for the production of value-added chemicalsfrom Ni-catalyzed plasma dry reforming of methane by means of density functional theory (DFT). Weinspected many activation barriers, from the early stage of adsorption of the major chemical fragmentsderived fromCH4andCO2molecules up to the formation of value-added chemicals at the surface, focusingon the formation of methanol, as well as the hydrogenation of C1and C2hydrocarbon fragments. Theactivation barrier calculations show that the presence of surface-bound H atoms and in some cases alsoremaining chemical fragments at the surface facilitates the formation of products. This implies that thehydrogenation of a chemical fragment on the hydrogenated crystalline surface is energetically favouredcompared to the simple hydrogenation of the chemical fragment at the bare Ni(111) surface. Indeed, thepresence of hydrogen modifies the electronic structure of the surface and the course of the reactions.We therefore conclude that surface-bound H atoms, and to some extent also the remaining chemicalfragments at the crystalline surface, induce the following effects: they facilitate associative desorption ofmethanol and ethane by increasing the rate of H-transfer to the adsorbed fragments while they impedehydrogenation of ethylene to ethane, thus promoting again the desorption of ethylene. Overall, they thusfacilitate the catalytic conversion of the formed fragments from CH4and CO2, into value-added chemicals.Finally, we believe that the retention of methane fragments, especially CH3, in the presence of surface-boundHatoms (as observed here for Ni) can be regarded as an identifier for the proper choice of a catalystfor the production of value-added chemicals.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000393931000063 Publication Date 2017-01-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.446 Times cited 26 Open Access OpenAccess  
  Notes (up) Financial support from the Reactive Atmospheric Plasmaprocessing –eDucation network (RAPID), through the EU 7thFramework Programme (grant agreement no. 606889) is grate-fully acknowledged. The calculations were performed using theTuring HPC infrastructure at the CalcUA core facility of the Univer-siteit Antwerpen, a division of the Flemish Supercomputer CenterVSC, funded by the Hercules Foundation, the Flemish Approved Most recent IF: 9.446  
  Call Number PLASMANT @ plasmant @ c:irua:139514 Serial 4343  
Permanent link to this record
 

 
Author Bahnamiri, O.S.; Verheyen, C.; Snyders, R.; Bogaerts, A.; Britun, N. pdf  url
doi  openurl
  Title Nitrogen fixation in pulsed microwave discharge studied by infrared absorption combined with modelling Type A1 Journal Article;nitrogen fixation
  Year 2021 Publication Plasma Sources Science & Technology Abbreviated Journal Plasma Sources Sci T  
  Volume 30 Issue 6 Pages 065007  
  Keywords A1 Journal Article;nitrogen fixation; pulsed microwave discharge; FTIR spectroscopy; discharge modelling; vibrational excitation; NO yield; energy cost; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract A pulsed microwave surfaguide discharge operating at 2.45 GHz was used for the conversion of molecular nitrogen into valuable compounds in several gas mixtures: N2 :O2 , N2 :O2 :CO2 and N2 :CO2 . The ro-vibrational absorption bands of the molecular species were monitored by a Fourier transform infrared apparatus in the post-discharge region in order to evaluate the relative number density of species, specifically NO production. The effects of specific energy input, pulse frequency, gas flow fraction, gas admixture and gas flow rate were studied for better understanding and optimization of the NO production yield and the corresponding energy cost (EC). By both the experiment and modelling, a highest NO yield is obtained at N2 :O2 (1:1) gas ratio in N2 :O2 mixture. The NO yield reveals a small growth followed by saturation when pulse repetition frequency increases. The energy efficiency start decreasing after the energy input reaches about 5 eV/molec, whereas the NO yield rises steadily at the same time. The lowest EC of about 8 MJ mol−1 corresponding to the yield and the energy efficiency of about 7% and 1% are found, respectively, in an optimum discharge condition in our case.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000659671000001 Publication Date 2021-06-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0963-0252 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited Open Access OpenAccess  
  Notes (up) Fonds De La Recherche Scientifique—FNRS, EOS O005118F ; The research is supported by the FNRS-FWO project ‘NITROPLASM’, EOS O005118F. O Samadi also acknowledges PhD student F Manaigo for cooperation in doing the additional measurements. Approved Most recent IF: 3.302  
  Call Number PLASMANT @ plasmant @c:irua:179170 Serial 6798  
Permanent link to this record
 

 
Author Tinck, S.; Tillocher, T.; Georgieva, V.; Dussart, R.; Neyts, E.; Bogaerts, A. pdf  url
doi  openurl
  Title Concurrent effects of wafer temperature and oxygen fraction on cryogenic silicon etching with SF6/O2plasmas Type A1 Journal article
  Year 2017 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym  
  Volume 14 Issue 9 Pages 1700018  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Cryogenic plasma etching is a promising technique for high-control wafer development with limited plasma induced damage. Cryogenic wafer temperatures effectively reduce surface damage during etching, but the fundamental mechanism is not well understood. In this study, the influences of wafer temperature, gas mixture and substrate bias on the (cryogenic) etch rates of Si with SF6/O2 inductively coupled plasmas are experimentally and computationally investigated. The etch rates are measured in situ with double-point reflectometry and a hybrid computational Monte Carlo – fluid model is applied to calculate plasma properties. This work allows the reader to obtain a better insight in the effects of wafer temperature on the etch rate and to find operating conditions for successful anisotropic (cryo)etching.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000410773200012 Publication Date 2017-04-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1612-8850 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.846 Times cited Open Access Not_Open_Access  
  Notes (up) Fonds Wetenschappelijk Onderzoek, 0880.212.840 ; Hercules Foundation; Flemish Government (Department EWI); Universiteit Antwerpen; Approved Most recent IF: 2.846  
  Call Number PLASMANT @ plasmant @c:irua:145637 Serial 4708  
Permanent link to this record
 

 
Author Verheyen, C.; Silva, T.; Guerra, V.; Bogaerts, A. pdf  url
doi  openurl
  Title The effect of H2O on the vibrational populations of CO2in a CO2/H2O microwave plasma: a kinetic modelling investigation Type A1 Journal article
  Year 2020 Publication Plasma Sources Science & Technology Abbreviated Journal Plasma Sources Sci T  
  Volume 29 Issue 9 Pages 095009  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma has been studied for several years to convert CO2 into value-added products. If CO2 could be converted in the presence of H2O as a cheap H-source for making syngas and oxygenates, it would mimic natural photosynthesis. However, CO2/H2O plasmas have not yet been extensively studied, not by experiments, and certainly not computationally. Therefore, we present here a kinetic modelling study to obtain a greater understanding of the vibrational kinetics of a CO2/H2O microwave plasma. For this purpose, we first created an electron impact cross section set for H2O, using a swarm-derived method. We added the new cross section set and CO2/H2O-related chemistry to a pure CO2 model. While it was expected that H2O addition mainly causes quenching of the CO2 asymmetric mode vibrational levels due to the additional CO2/H2O vibrational-translational relaxation, our model shows that the modifications in the vibrational kinetics are mainly induced by the strong electron dissociative attachment to H2O molecules, causing a reduction in electron density, and the corresponding changes in the input of energy into the CO2 vibrational levels by electron impact processes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000570601300001 Publication Date 2020-09-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.8 Times cited Open Access  
  Notes (up) Fonds Wetenschappelijk Onderzoek, 1184820N ; Fundação para a Ciência e a Tecnologia, under projects UIDB/50010/2020 and ; This research was supported by FWO–PhD fellowshipaspirant, Grant 1184820N. VG and TS were partially supported by the Portuguese FCT, under projects UIDB/50010/2020 and UIDP/50010/2020 Approved Most recent IF: 3.8; 2020 IF: 3.302  
  Call Number PLASMANT @ plasmant @c:irua:172011 Serial 6433  
Permanent link to this record
 

 
Author Razzokov, J.; Yusupov, M.; Vanuytsel, S.; Neyts, E.C.; Bogaerts, A. pdf  url
doi  openurl
  Title Phosphatidylserine flip-flop induced by oxidation of the plasma membrane: a better insight by atomic scale modeling Type A1 Journal article
  Year 2017 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym  
  Volume 14 Issue 10 Pages 1700013  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We perform molecular dynamics simulations to study the flip-flop motion of phosphatidylserine (PS) across the plasma membrane upon increasing oxidation degree of the membrane. Our computational results show that an increase of the oxidation degree in the lipids leads to a decrease of the free energy barrier for translocation of PS through the membrane. In other words, oxidation of the lipids facilitates PS flip-flop motion across the membrane, because in native phospholipid bilayers this is only a “rare event” due to the high energy barriers for the translocation of PS. The present study provides an atomic-scale insight into the mechanisms of the PS flip-flop upon oxidation of lipids, as produced for example by cold atmospheric plasma, in living cells.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000413045800010 Publication Date 2017-04-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1612-8850 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.846 Times cited 9 Open Access Not_Open_Access  
  Notes (up) Fonds Wetenschappelijk Onderzoek, 1200216N ; Approved Most recent IF: 2.846  
  Call Number PLASMANT @ plasmant @c:irua:149567 Serial 4910  
Permanent link to this record
 

 
Author Yusupov, M.; Lackmann, J.-W.; Razzokov, J.; Kumar, S.; Stapelmann, K.; Bogaerts, A. pdf  url
doi  openurl
  Title Impact of plasma oxidation on structural features of human epidermal growth factor Type A1 Journal article
  Year 2018 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym  
  Volume 15 Issue 8 Pages 1800022  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We perform computer simulations supported by experiments to investigate the oxidation of an important signaling protein, that is, human epidermal growth factor (hEGF), caused by cold atmospheric plasma (CAP) treatment. Specifically, we study the conformational changes of hEGF with different degrees of oxidation, to mimic short and long CAP treatment times. Our results indicate that the oxidized structures become more flexible, due to their conformational changes and breakage of the disulfide bonds, especially at higher oxidation degrees. MM/GBSA calculations reveal that an increasing oxidation level leads to a lower binding free energy of hEGF with its receptor. These results help to understand the fundamentals of the use of CAP for wound healing versus cancer treatment at short and longer treatment times.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000441895700004 Publication Date 2018-05-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1612-8850 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.846 Times cited 7 Open Access Not_Open_Access  
  Notes (up) Fonds Wetenschappelijk Onderzoek, 1200216N ; Bundesministerium für Bildung und Forschung, 03Z22DN12 ; Approved Most recent IF: 2.846  
  Call Number PLASMANT @ plasmant @c:irua:152815 Serial 5008  
Permanent link to this record
 

 
Author Ghasemitarei, M.; Privat-Maldonado, A.; Yusupov, M.; Rahnama, S.; Bogaerts, A.; Ejtehadi, M.R. url  doi
openurl 
  Title Effect of Cysteine Oxidation in SARS-CoV-2 Receptor-Binding Domain on Its Interaction with Two Cell Receptors: Insights from Atomistic Simulations Type A1 Journal article
  Year 2022 Publication Journal Of Chemical Information And Modeling Abbreviated Journal J Chem Inf Model  
  Volume 62 Issue 1 Pages 129-141  
  Keywords A1 Journal article; Pharmacology. Therapy; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Binding of the SARS-CoV-2 S-glycoprotein to cell receptors is vital for the entry of the virus into cells and subsequent infection. ACE2 is the main cell receptor for SARS-CoV-2, which can attach to the C-terminal receptor-binding domain (RBD) of the SARS-CoV-2 S-glycoprotein. The GRP78 receptor plays an anchoring role, which attaches to the RBD and increases the chance of other RBDs binding to ACE2. Although high levels of reactive oxygen and nitrogen species (RONS) are produced during viral infections, it is not clear how they affect the RBD structure and its binding to ACE2 and GRP78. In this research, we apply molecular dynamics simulations to study the effect of oxidation of the highly reactive cysteine (Cys) amino acids of the RBD on its binding to ACE2 and GRP78. The interaction energy of both ACE2 and GRP78 with the whole RBD, as well as with the RBD main regions, is compared in both the native and oxidized RBDs. Our results show that the interaction energy between the oxidized RBD and ACE2 is strengthened by 155 kJ/mol, increasing the binding of the RBD to ACE2 after oxidation. In addition, the interaction energy between the RBD and GRP78 is slightly increased by 8 kJ/mol after oxidation, but this difference is not significant. Overall, these findings highlight the role of RONS in the binding of the SARS-CoV-2 S-glycoprotein to host cell receptors and suggest an alternative mechanism by which RONS could modulate the entrance of viral particles into the cells.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000740019000001 Publication Date 2022-01-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1549-9596 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.6 Times cited Open Access Not_Open_Access  
  Notes (up) Fonds Wetenschappelijk Onderzoek, 1200219N ; Binding of the SARS-CoV-2 S-glycoprotein to cell receptors is vital for the entry of the virus into cells and subsequent infection. ACE2 is the main cell receptor for SARS-CoV-2, which can attach to the C-terminal receptor-binding domain (RBD) of the SARS-CoV-2 S-glycoprotein. The GRP78 receptor plays an anchoring role, which attaches to the RBD and increases the chance of other RBDs binding to ACE2. Although high levels of reactive oxygen and nitrogen species (RONS) are produced during viral infections, it is not clear how they affect the RBD structure and its binding to ACE2 and GRP78. In this research, we apply molecular dynamics simulations to study the effect of oxidation of the highly reactive cysteine (Cys) amino acids of the RBD on its binding to ACE2 and GRP78. The interaction energy of both ACE2 and GRP78 with the whole RBD, as well as with the RBD main regions, is compared in both the native and oxidized RBDs. Our results show that the interaction energy between the oxidized RBD and ACE2 is strengthened by 155 kJ/mol, increasing the binding of the RBD to ACE2 after oxidation. In addition, the interaction energy between the RBD and GRP78 is slightly increased by 8 kJ/mol after oxidation, but this difference is not significant. Overall, these findings highlight the role of RONS in the binding of the SARS-CoV-2 S-glycoprotein to host cell receptors and suggest an alternative mechanism by which RONS could modulate the entrance of viral particles into the cells. Approved Most recent IF: 5.6  
  Call Number PLASMANT @ plasmant @c:irua:185485 Serial 7050  
Permanent link to this record
 

 
Author Oliveira, M.C.; Yusupov, M.; Bogaerts, A.; Cordeiro, R.M. pdf  url
doi  openurl
  Title Lipid Oxidation: Role of Membrane Phase-Separated Domains Type A1 Journal Article
  Year 2021 Publication Journal Of Chemical Information And Modeling Abbreviated Journal J Chem Inf Model  
  Volume 61 Issue 6 Pages 2857-2868  
  Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract Lipid oxidation is associated with several inflammatory and neurodegenerative diseases, but many questions to unravel its effects on biomembranes are still open due to the complexity of the topic. For instance, recent studies indicated that phase-separated domains can have a significant effect on membrane function. It is reported that domain interfaces are “hot spots” for pore formation, but the underlying mechanisms and the effect of oxidation-induced phase separation on membranes remain elusive. Thus, to evaluate the permeability of the membrane coexisting of liquid-ordered (Lo) and liquid-disordered (Ld) domains, we performed atomistic molecular dynamics simulations. Specifically, we studied the membrane permeability of nonoxidized or oxidized homogeneous membranes (single-phase) and at the Lo/Ld domain interfaces of heterogeneous membranes, where the Ld domain is composed of either oxidized or nonoxidized lipids. Our simulation results reveal that the addition of only 1.5% of lipid aldehyde molecules at the Lo/Ld domain interfaces of heterogeneous membranes increases the membrane permeability, whereas their addition at homogeneous membranes does not have any effect. This study is of interest for a better understanding of cancer treatment methods based on oxidative stress (causing among others lipid oxidation), such as plasma medicine and photodynamic therapy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000669541400034 Publication Date 2021-06-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1549-9596 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.76 Times cited Open Access OpenAccess  
  Notes (up) Fonds Wetenschappelijk Onderzoek, 1200219N ; Coordenação de Aperfeiçoamento de Pessoal de Nível Superior; We thank Universidade Federal do ABC for providing the computational resources needed for completion of this work and CAPES for the scholarship granted. M.Y. acknowledges the Flanders Research Foundation (grant 1200219N) for financial support. Approved Most recent IF: 3.76  
  Call Number PLASMANT @ plasmant @c:irua:179766 Serial 6806  
Permanent link to this record
 

 
Author Yusupov, M.; Dewaele, D.; Attri, P.; Khalilov, U.; Sobott, F.; Bogaerts, A. pdf  url
doi  openurl
  Title Molecular understanding of the possible mechanisms of oligosaccharide oxidation by cold plasma Type A1 Journal article
  Year 2022 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym  
  Volume Issue Pages  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Cold atmospheric plasma (CAP) is a promising technology for several medical applications, including the removal of biofilms from surfaces. However, the molecular mechanisms of CAP treatment are still poorly understood. Here we unravel the possible mechanisms of CAP‐induced oxidation of oligosaccharides, employing reactive molecular dynamics simulations based on the density functional‐tight binding potential. Specifically, we find that the interaction of oxygen atoms (used as CAP‐generated reactive species) with cellotriose (a model system for the oligosaccharides) can break structurally important glycosidic bonds, which subsequently leads to the disruption of the oligosaccharide molecule. The overall results help to shed light on our experimental evidence for cellotriose CAP. This oxidation by study provides atomic‐level insight into the onset of plasma‐induced removal of biofilms, as oligosaccharides are one of the main components of biofilm.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000865844800001 Publication Date 2022-10-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1612-8850 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.5 Times cited Open Access OpenAccess  
  Notes (up) Fonds Wetenschappelijk Onderzoek, 1200219N ; They also acknowledge the Turing HPC infrastructure at the CalcUA core facility of the University of Antwerp (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI), and the UA, where all computational work was performed. This study was financially supported by the Research Foundation–Flanders (FWO) (grant number 1200219N). Approved Most recent IF: 3.5  
  Call Number PLASMANT @ plasmant @c:irua:191404 Serial 7113  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: