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Analysis of short-lived reactive species in plasma-air-water systems: 
The do’s and the don’ts 
Yury Gorbanev*,1 Angela Privat-Maldonado,1,2 Annemie Bogaerts1

1Research group PLASMANT, Department of Chemistry, University of Antwerp, Wilrijk, Antwerpen, Belgium BE-2610
2Center for Oncological Research (CORE), University of Antwerp, Wilrijk, Antwerpen, Belgium BE-2610

This Feature Article addresses the analysis of the reactive species generated by non-thermal atmospheric pressure plasmas, which are 
widely employed in industrial and biomedical research, as well as first clinical applications. We summarise the progress in detection 
of plasma-generated short-lived reactive oxygen and nitrogen species in aqueous solutions, discuss the potential and limitations of 
various analytical methods in plasma-liquid systems, and provides an outlook on the possible future research goals in development 
of short-lived reactive species analysis methods for a general non-specialist audience. 

1. Cold atmospheric pressure plasmas: research and 
applications, reactive species, and interaction with liquids.   

Plasma is an ionised gas, often (controversially1) referred to 
as the fourth state of matter. It contains neutral gas molecules 
and atoms, but also electrons and various types of ions, excited 
species and radicals. Plasmas are generally divided into several 
types based on the operating temperature and pressure. First, we 
can distinguish (i) high-temperature plasmas, operating at 
temperatures of (several) million K (as used for fusion research, 
mimicking the conditions of the Sun) and (ii) low temperature 
plasmas. The latter can still be subdivided into thermal plasmas, 
operating at temperatures of a few thousand K (such as 
inductively coupled plasma used for ICP-MS and ICP-OES in 
analytical chemistry), and non-thermal plasmas, where the gas 
remains at room temperature (and up to 1000 K) but the 
electrons are heated to 10,000 – 30,000 K (1-3 eV). These non-
thermal (‘cold’) plasmas are also called ‘gas discharges’,2 and 
operate at either low pressure (e.g., glow discharges used for 
GDMS and GD-OES in analytical chemistry) or atmospheric 
pressure (e.g., plasma jets and dielectric barrier discharges, also 
used as ion sources in analytical chemistry for ambient 
ionization mass spectrometry ).3,4 

These cold atmospheric pressure plasmas (CAPs) are not 
only important in analytical chemistry, but they have gained 
significant interest in recent years due to their unique 
properties. They can be generated by applying an electric field 
to a gaseous medium at ambient pressure and near-ambient 
(‘low’ compared to thermal plasmas) temperature. 5,6 

CAPs produce various reactive oxygen and nitrogen species 
(RONS) which define their potential applications5,7 (Fig. 1). 
The applications include photoresist removal,8 plasma 
catalysis,9,10 thin
film deposition and modification,5,11 production of enhanced 
nano-
materials,12 plasma-assisted polymerisation,5,13 waste water 
treatment,11,14 removal of volatile organic chemicals from 
air,10,15 conversion of CO2 into value-added chemicals,16  etc. 

Moreover, cold plasma is a valuable tool in chemical 
synthesis.17,18 Being able to efficiently initiate radical chain 
reactions in systems comprised of gaseous plasma and liquids,18 
CAP is an attractive alternative to conventional radical 
initiators. 

However, the most burgeoning field of CAP research is 
biomedical and agricultural applications. The agricultural 
utilisations of CAPs are enhancement of seed germination, anti-
bacterial and anti-fungal treatment of plants,19 similarly to food 
processing, which makes use of the decontaminating properties 
of cold plasma.20 The vast area of CAP applications in 
biomedicine spreads from dentistry (teeth whitening, 
disinfection)21,22 and production of surfaces with anti-bacterial 
resistance23 to various sterilisations processes,24,25 wound 
healing,24 deactivation of bacteria and viruses,26,27 but  the field 
that recently attracts most attention is cancer treatment.24,28-30 In 
many cases, biomedical CAPs are plasma jets in which plasma 
is created with a noble gas (Ar30 or He27,28), although air is also 
used.31 

Figure 1. Cold plasma in contact with liquids produces various 
RONS for diverse chemical, agricultural and medical applications.  

The reactive species are created either within the plasma32 (e.g., 
using He with O2 admixture28), or upon its interaction with the 
surrounding atmosphere30,33 (N2, O2, and H2O vapour in air). 

The reactive species are created either within the plasma32 
(e.g., using He with O2 admixture28), or upon its interaction with 
the surrounding atmosphere30,33 (N2, O2, and H2O vapour in air). 
The resulting RONS ‘cocktail’ consists of various atomic, 
radical, ionic and molecular species, such as O, O3, 1O2, OH, 
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O2-/OOH, NO, ONOO- and OONOO-, H2O2, NO2
-, NO3

-. 
These species, when interacting with biological substrates, are 
responsible for the plasma-elicited effects.7,24,30 Their analysis, 
both qualitative (‘Is this species present in a particular plasma 
system?’) and quantitative (‘At what concentrations’?), is 
paramount for understanding and tailoring the desired effects of 
CAP.34,35

The gas phase plasma does not interact with dry biological 
substrates: water plays an essential role in food processing, 
agricultural and – especially - biological milieu. The primary 
RONS, such as OH, NO, H2O2, O, O3, are mainly created in 
the gas phase plasma7,32,33 and undergo transformations in the 
liquid, although in certain cases (i.e., plasma discharge to the 
liquid surface) they can be created in the interface layer of 
aqueous solutions.30,35 Secondary RONS, such as e.g. OH and 
NO2 from HOONO, HNO2 and HNO3 from NO and NO2, 
are the result of degradation or interaction of the primary RONS 
with each other or molecules in media.7,36 

Chemical modelling together with various analytical 
techniques (e.g., optical spectroscopy and mass spectrometry 
methods) aids in studying the composition of the gas phase 
plasma7,32,37 Recently, efforts in computational chemistry have 
addressed the interaction of gas phase RONS with aqueous 
solutions.37-39 However, experimental monitoring of RONS in 
liquid is crucial for model benchmarking, and provides the most 
direct information on the reactive species present in the liquid. 

This Feature Article focusses on the short-lived reactive 
species induced by CAP in aqueous solutions, and methods of 
their detection, identification and quantification. 

The information on the identified limitations of the methods 
is also important for the generalist audience dealing with the 
detection of short-lived RONS in solutions, in systems different 
from CAPs. 
2. Which RONS? Two types of plasma application mode.

The species potentially present in the analyte solutions 
depend on the actual CAP application mode. One option is a 
pre-treatment of a relevant liquid medium by CAP, with further 
application to a biological target.24,27,28,30 In this so-called 
indirect treatment, the effects of plasma are attributed to long-
lived molecular and ionic chemical species, which remain in 
solution after CAP treatment, such as H2O2, NO2

-, NO3
-30,40 (Fig. 

2). Spectrophotometry is most commonly employed to detect 
and quantify these species.41 For example, H2O2 is often 
measured using colourimetry with titanium(IV) oxalate or 
vanadate solutions.27,30 The colourimetric detection of the 
nitrate/nitrite pair uses Griess reagent, and is not influenced by 
other long-lived plasma RONS.42 Many of these detection 
methods are described in the recent paper by Massima Mouele 
et al.,41 albeit without selectivity discussion. 

The second application mode involves direct CAP treatment 
of 
the biological target (e.g., bacterial or cancer cells in a liquid 
medi-

Figure 2. Two methods of plasma application, RONS in solutions 
and main analytical techniques used for their detection.

um).24,27 Here, the RONS mixture does not only contain 
persistent
RONS, but also the short-lived radical and atomic species: O, 
NO, OH, O2-/OOH, as well as non-radical chemical 
compounds, such as singlet oxygen 1O2. These species have 
diverse effects, from direct oxidative stress7 to regulation of 
various cellular processes.43  

Importantly, they were shown to play a critical role in 
bacterial inactivation,44 cancer cell apoptosis45 and 
immunogenic cell death,46 and were suggested to be the major 
effectors in the degradation of 
organic compounds in water.47 Therefore, their analysis in 
liquid in contact with plasma is of immense importance for the 
deconvolution of plasma chemistry and effects.35

Similarly to the long-lived RONS, the short-lived ones are 
also often measured using spectrophotometric methods.41,48 
However, colourimetric and fluorometric systems consisting of 
complex organic molecules, and based on either decay or 
induction of colour or fluorescence, lack selectivity (see 
detailed discussion in section 3). 

Other reported analytical methods include liquid 
chromatography coupled with mass spectrometry (LC-MS) of 
the RONS-modified chemical substrates, and electron spin 
resonance (ESR) spectroscopy.27,32,33,44

In plasma-liquid systems, the selectivity of analysis becomes 
detrimental: plasma generates many different RONS, which are 
delivered to the liquid at the same time. The other problem 
arises from the analysis being only semi-quantitative in most 
cases. In the following section, we discuss the main three 
analytical methods used for the analysis of plasma-air-water 
systems in terms of these problems.
3. Analysis of short-lived RONS. 

3.1. Optical spectroscopic analysis of plasma-induced 
RONS.

Optical spectroscopic methods are probably the most widely-
used methods for the detection of short-lived RONS via 
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modification of substrates, both historically and based on the 
equipment availability. Some of them used in plasma-liquid 
research are described in the recent review by Massima Mouele 
et al.41 

Many of the chemical reactions used in these methods were 
adapted by the plasma community from known analyses in 
biological milieu, and are sometimes used disregarding the 
limitations. Here, we present a general description of the 
methods with several examples, to show some selectivity-based 
limitations. 

Spectroscopic methods comprise UV-Vis spectrophotometry 
and fluorimetry (measurements of the intensity of induced or 
reduced colour, or induced fluorescence upon reactions of 
chemical probes with the plasma-produced RONS in liquids), 
and direct UV spectrophotometry. The latter technique was 
used to detect ONOO- based on its characteristic absorption, 
although high-pH medium is required to stabilise ONOO- for 
subsequent UV analysis.49 

Coloured dyes are degraded by CAP-induced RONS, and the 
loss of colour can be quantified using UV-Vis 
spectrophotometry.50 Some of the most commonly used dyes 
used to assess ROS are methylene blue and methylene red,47,51 
which are often used in research of CAP for removal of 
pollutants during waste water treatment. 

The main disadvantage of this method is the non-specific 
degradation of such dyes. For instance, decolouration of 
methylene blue can be a result of reactions with OH, O, and 
O3.52 O2- can also be detected by degradation of dyes53 with 
similar selectivity issues. For example, the induction of 
chemiluminescence ascribed to the presence of OH and O2- 
(i.e., non-selectively) was observed at the CAP-liquid interface 
when alkaline solutions of luminol were exposed to plasma.54 

Similarly, induction of fluorescent properties of chemical 
molecules is also used.55,56 Terephthalic acid (TA) is very often 
used to detect OH in CAP-liquid systems.57,58 The method is 
based on the induced fluorescence due to the formation of 
hydroxy-substituted TA. However, possible degradation of TA 
by plasma species (e.g. combination of O3, OH, H2O2 and UV 
photons59) is usually not taken into account.

Thus, optical spectroscopy methods can be used for both 
qualitative and semi-quantitative, albeit in most cases very non-
selective, detection of the plasma-induced RONS in liquids. 
The advantage of the method is the possible direct visualisation 
requiring no equipment for a qualitative analysis a simple 
‘present/not present’ and ‘less/more’ assessment can be done by 
naked eye.54 An interesting and important use of colourimetry 
and fluorimetry is introducing respective chemical probes in 
aqueous compartments of a gel to investigate the depth of the 
RONS penetration into the gel as a tissue model.60 
3.2. ESR analysis.

ESR is the most direct method of radical detection in liquid 
systems. It is used for the detection of paramagnetic compounds 
in general, and free radicals (systems with unpaired electrons) 
specifically.61

In most cases, free radicals are too short-lived to be detected 
directly. A technique of ‘trapping’ radicals by reacting them 
with 
organic molecules, usually nitrones, is therefore used.62 Spin 
traps undergo addition reactions with radicals, yielding more 
persistent radical adducts, which can be monitored by ESR 
within reasonable timescales (min to h).41,63 

Another method is using a spin probe: usually a 
hydroxylamine of a stable nitroxide.64 Upon reaction with 
RONS,  a stable nitroxide is formed via the abstraction of an H 
atom from the hydroxylamine group, and the concentration of 
this nitroxide radical is measured. Both methods are illustrated 
in Scheme 1. 

These two methods of radical detection are frequently used 
in biological milieu, both in liquid media and intracellularly.65 
They have been adopted by the plasma community in the last 
decade, and since then widely employed in cold plasma-liquid 
systems, where they are used to detect OH66-68 and  O2-,66,68 
NO,69,70  O and O3,27,33,71 and 1O2.27,66 Extensive ESR detection 
studies covering many of the biologically-relevant CAP-
induced RONS in aqueous solutions were performed.70,72 We 
have previously used spin trapping of the radicals produced 
from isotopically labelled water to investigate the sources 
(vapour or liquid) of RONS induced in treated solutions.32,33,73 
Spin trapping was also used to monitor radicals produced from 
organic solvents in a polymeric solution treated by CAP,12 and 
in water-alcohol mixtures.74  

 

N
O

R

HH3C

R: OH, OOH, H, etc.
N
O

H3C R

Spin trap DMPO Radical adduct DMPO-R

N

O

OH
N

O

O

RONS, O2

Spin probe TEMPONE-H Stable nitroxide TEMPONE

Scheme 1. Formation of ESR-detectable nitroxide radicals 
from the spin probe 1-hydroxy-2,2,6,6-tetramethyl-4-oxo-
piperidine (TEMPONE-H) and the spin trap 5,5-dimethyl-
1-pyrroline N-oxide (DMPO).

However, there are both general and specific limitations 
associated with ESR detection of radicals via spin trapping 
which are sometimes ignored, or otherwise unknown, in the 
community. We will try to address them here. 

1) First, the detection of radicals by ESR (not limited to 
plasma-liquid systems) is seldom quantitative. The 
concentrations of the radical adducts or nitroxides from 
hydroxylamines are easily obtained using calibration with 
solutions of stable radicals (e.g. 2,2,6,6-tetramethylpiperidine 
(TEMPO) or similar stable nitroxides) of known 
concentration.32,33,70 However, these values represent only a 
fraction of the total amount of radicals entering the liquid, 
which surprisingly is sometimes overlooked.67 Free radicals 
undergo various reactions: recombination (OH to H2O2), side 
reactions with water molecules (NO, NO2), reactions with 
organic components of the media and other scavengers,18,27,70 
etc. This limits the amount of the trapped radicals based on 
specific reaction rates. Nevertheless, the changes of these 
trapped amounts correspond to the changes of the total 
concentration of radicals (or atoms),33,71 so qualitative trends 
can be revealed and yield useful information.

2) The second limitation is the non-selectivity of spin probes 
and spin traps. However, these two types of ESR ‘reagents’ 
require rather different selectivity-related considerations, as we 
demonstrate with several examples.
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In a recent study, TEMPONE-H (see Scheme 1) was used to 
detect O2-, NO, and peroxynitrite ONOO- (short-lived at 
physiological pH),75,76 due to its high affinity towards these 
species. However, 
TEMPONE-H also reacts with OH.77 Moreover, 
hydroxylamines of stable nitroxides are easily oxidised, even by 
O2 from air,69,78 and thus also by O3, O, and other ROS produced 
by plasma. This, once again, is a general difference between 
biological systems (where only e.g. ONOO- and O2- are 
produced by biological bodies in vitro56,79) and plasma-air-
liquid systems, where a much larger variety of RONS is 
delivered into the liquid at the same time.

The non-selectivity of spin trapping, on the other hand, is a 
useful property rather than a disadvantage, because many 
radicals can be identified simultaneously from the same 
spectrum. For example, spin trap 5,5-dimethyl-1-pyrroline N-
oxide (DMPO) forms relatively stable radical adducts  with 
OH and H.33 In a mixture of radical adducts, each adduct has a 
unique spectral pattern, due to different hyperfine values 
defined by the interactions of an unpaired electron with nearby 
nuclei. In other words, DMPO-OH is distinguishable from e.g. 
DMPO-H due to different hyperfine values, using ESR 
simulations.32,33 
In certain cases, however, this non-selectivity can produce 
false-positive results, and needs to be taken into account when 
performing spin trapping experiments. One of the important 
cases is spin trapping of the CAP-produced NO. In CAP-liquid 
systems, delivery of both NO radicals and HNO2 to the liquid 
is feasible. A spin trap comprising a complex of N-methyl-D-
glucamine dithiocarbamate (MGD) with iron(II) ion forms 
(MGD)2Fe2+-NO radical adducts, both with NO and NO2

- 
(Scheme 2).80 

(MGD)2Fe2+

NO2
-

(MGD)2Fe2+ N

O

O

(MGD)3Fe3+ NO

(MGD)2Fe2+

(MGD)2Fe2+ NO

- (MGD)3Fe3+

NO

Scheme 2. Formation of the NO adduct in reactions of N-
methyl-D-glucamine dithiocarbamate (MGD)-iron(II) 
complex with nitric oxide and nitrite anion. Side reactions 
leading to the adduct are marked with red arrows.

Similarly, DMPO-OH can be formed as a result of a 
nucleophilic attack of H2O molecules on a carbon atom of the 
C=N bond in DMPO.81,82 In these cases, control experiments 
with no radical production by plasma69 are required to evaluate 
the contribution of the side reactions leading to false-positive 
results (i.e., not from direct spin trapping). 

Another example is the oxidation of 2,2,6,6-
tetramethylpiperidine (TEMP) or other cyclic amines to the 
respective stable nitroxides. Directly adapted from biological 
systems,83 this reaction has been used to detect 1O2 in water 
exposed to CAP.66,70,72 However, unlike those systems, cold 
plasma produces other RONS, which can oxidise TEMP. 
Takamatsu et al. used NaN3 as a specific quencher for 1O2 to 
evaluate its contribution to the formation of the nitroxide 
radical.72 Note however that while this method is suitable for 

media with physiological pH, NaN3 also reacts with O3 under 
basic conditions.84 In our previous work we showed that besides 
1O2, the only other plasma-induced RONS that can oxidise 
TEMP are O3 and O.33 By comparing the densities of O3 and O 
in the gas plasma with the trends of TEMPO formation in the 
liquid, the main contributor to this oxidation can be 
determined.71 This, however, would be specific to each 
particular plasma-liquid system.

It is worth mentioning that the (non-)selectivity feature can 
sometimes be an artifact of a spin adduct degradation. For 
example, the stability of DMPO-OOH radical adduct is low, and 
the adduct readily transforms into DMPO-OH.85,86 In such 
cases, using a scavenger to eliminate one of the possible 
contributors to the final adduct formation may be required. As 
an example, superoxide dismutase can be used to estimate the 
contributions of OH and O2-  on the detected DMPO-OH.66 

This brings us to the next limitation, inherent to ESR in 
liquids treated by CAPs. 

3) The third limitation is the degradation of nitroxides in 
plasma-liquid systems. Both spin traps and spin adducts are 
organic molecules, and as such are prone to degradation by 
plasma-induced RONS. It was suggested that organic pollutants 
(and model dye molecules) are degraded in plasma-treated 
liquids by OH radicals, O or O3, and solvated electrons from 
plasma.14,47,87,88 Similar pathways are possible for spin traps and 
adducts. Indeed, the spin trap 5-(diethoxyphosphoryl)-5-
methyl-1-pyrroline N-oxide (DEPMPO) was shown to degrade 
and form a detectable carbon-centred radical in aqueous 
solutions upon plasma treatment.33 N-tert-butyl-α-
phenylnitrone (PBN) can undergo degradation to tert-butyl 
hydronitroxide upon reactions with OH.89 DMPO is non-
selectively oxidised to 5,5-dimethyl-2-pyrrolidone N-oxyl 
(DMPOX) by e.g. 1O2

90
 or media-derived oxidants such as 

hypochlorite.91,92 In many cases, this does not present a problem 
due to a large excess of unreacted spin trap. However, in 
plasma-liquid systems, and especially in systems when plasma 
is ignited without gas flow,46,93 mass transfer within the liquid 
may be limited.35 This can result in only the top layer of solution 
reacting with RONS. In this case, the degradation of the spin 
trap and/or spin adduct may dominate, resulting in a decrease 
of the obtained ESR signal. It is therefore important to study the 
development of the adduct concentration within the 
experimental timeframe.32,33,71

Spin adducts are only relatively stable, and undergo decay 
over extended periods of time.61,65 Thus, standardisation of 
experimental procedures (i.e., time between plasma exposure 
and ESR measurements) is necessary to obtain any reliable 
information. 

Regarding the CAP-water systems, spin adducts also react 
with various CAP-induced radicals as well as O and/or O3, 
yielding non-paramagnetic compounds (Scheme 3). This was 
demonstrated in plasma-treated water for stable nitroxide 
TEMPO and a PBN-2H radical adducts, which decayed with 
similar rates, suggesting similar decay pathways.69 The 
reactions of the nitroxide group with OH, H, O3/O, and other 
plasma-induced RONS may lead to complete loss of the ESR 
signal, and thus affect even the semi-quantitative results.69,94,95   

Using an excess of the spin trap to avoid the loss of the signal 
upon decay becomes impractical when the spin trap itself is a 
radical: the ESR signal of the product will be dwarfed by the 
signal of the spin trap. This can be demonstrated with 2-phenyl-
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5

4,4,5,5-tetramethylimidazoline 1-oxyl-3-oxide (PTIO) spin trap 
or its derivatives, which are used to detect NO in CAP-exposed 
solutions.56,72 PTIO reacts with NO to produce 2-phenyl-
4,4,5,5-tetramethylimidazoline 1-oxyl (PTI)96 as shown in 
Scheme 5. Since both PTIO and PTI are nitroxides, they lose 
their radical nature in CAP-treated water due to reactions with 
plasma-induced RONS (see Scheme 3). Moreover, PTI can be 
oxidised back to PTIO by plasma-induced ROS (Scheme 4). As 
a result, the decay rate of the product (PTI) may even exceed 
that of the reagent (PTIO).69 This can lead to a false-negative 
result in NO detection.

N
O

N
OH

N
H

nitroxide amine

Nnon-paramagnetic
oxidation products
(oxoammonium, ...)

[O]

hydroxylamine

H OH

HOH

- OOH

Scheme 3. The loss of nitroxide moiety via reactions with 
plasma-induced ROS.  

Despite its limitations, ESR analysis is the most 
demonstrative tool in analyzing the mixture of (radical) RONS 
produced by cold plasma in liquids. Moreover, a useful 
technique of spin trapping can be used in combination with 
other techniques, as we show below.
3.3. Liquid chromatography and mass spectrometry of 
chemical substrates modified by RONS: Less direct, less 
selective.

The spin trapping technique discussed in previous section can 
be used in combination with (tandem) mass spectrometry. The 
adducts of DMPO, DEPMPO and other nitrone spin traps can 
be analysed not by EPR, but instead using liquid 
chromatography-mass spectrometry (LC-MS).97,98 Certainly, 
this technique needs to be used with caution, as nitroxides may 
decay during the analysis, e.g. during electrospray ionisation.99

N

N

O

O

NO

- NO2
N

N

O
PTIO PTI

[O]

Scheme 4. Formation of imino nitroxide PTI via reaction of 
nitronyl nitroxide PTIO with NO. A reverse reaction is 
marked with a red arrow.  

In general, mass spectrometry is a versatile technique that can 
be used for the analysis of stable products, formed in reactions 
of chemicals with plasma-induced RONS. However, just like 
with any other method, the complexity of plasma-liquid 
systems arises from the large variety of RONS in the gas phase 
plasma, which creates selectivity concerns. 

Amino acids, such as e.g. cysteine, are viable ‘fingerprint’ 
probes for the detection of RONS in solutions exposed to CAP. 
Depending on the dominant RONS present in different plasmas, 
cysteine undergoes different transformations, which can be 
tracked using the MS analysis of the products.100,101   The 

presence of ONOO- and ClO- (a highly oxidising and bio-
effective species formed upon plasma exposure of chloride-
containing solutions44,91) in plasma-treated me-
dia can also be assessed using LC-MS. The detection is based 
on the mass spectrometric analysis of the modified L-tyrosine 
in aqueous media after plasma exposure. Here, one of the 
formed products, 3-nitrotyrosine, is ascribed to originate from 
ONOO- and NO radicals formed by CAP.102,103  However, the 
nitration of tyrosine is highly non-selective, and can occur in 
reactions not only with ONOO- and NO, but also NO2, NO2

-, 
etc.104 This limits the applicability of the method to a general 
presence of RNS in CAP-liquid systems rather than specific 
species. 

Aromatic substitution reactions of phenol enable detection of 
O as well as NO, NO2, and OH radicals. Nitration and 
nitrosation of phenols with subsequent high performance liquid 
chromatography (HPLC) analysis of the products can be used 
to detect ONOO- in aqueous solutions after exposure to CAP.  
Although several species can lead to the formation of the same 
product (e.g., nitrosophenol is formed with both NO and 
ONOO-; nitrophenol with NO2, HNO2 and HNO3), the 
dominating reactions are highly pH dependent.36 Similarly, 
HPLC analysis of the hydroxylated products of phenol can be 
used to detect OH in liquids in contact with plasma.42 
However, the selectivity is once again an issue: this 
hydroxylation can also occur with CAP-produced solvated O 
atoms.105,106  

HPLC can be employed without MS analysis. This requires 
calibration of the HPLC equipment with the analysed 
compounds. Salycilic acid (SA) is used in CAP-water systems, 
for the detection of plasma-produced OH. HPLC (even 
without MS) can be used to detect the hydroxylation product of 
SA: 2,5-dihydroxybenzoic acid (2,5-DHBA).107 It was also 
shown that reactions of SA with OH in CAP-treated aqueous 
media lead not only to 2,5-DHBA,  but also 2,3-DHBA and 
catechol.108 HPLC analysis thus requires initial calibration of 
the specific method (eluent, column, flow, etc.) to estimate the 
retention time of the products, and thus obtain quantitative 
results on their concentrations. However, it has not been taken 
into account that the hydroxylated product formation is likely 
non-selective: it can be caused by O3

109 and possibly O atoms 
(similarly to reactions of phenols; see above). 

Thus, the quantitative measurements require assessment of 
all reaction products, and are largely influenced by the presence 
of other plasma-induced RONS (Scheme 5).

Aqueous solutions of dimethylsulfoxide were employed in 
the detection of OH as well. The products of the reaction, 
formaldehyde (HCHO) and methanesulfinic acid, are analysed 
e.g. by HPLC (HCHO is first subjected to derivatisation with 
2,4-dinitrophenyl hydrazine).57,110,111  However, the results may 
not be quantitative due to the possible degradation of the 
analysed product: HCHO is ove-oxidised to CO2 by OH in the 
presence of O2.111 

Thus, chromatography and/or mass spectrometry present 
valuable analytical options for the analysis of plasma-produced 
RONS in liquids, albeit not always quantitatively straight-
forward. Chemical modification of substrates may be non-
selective and require complex optimisation of analytical 
conditions together with careful kinetic considerations. 
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OH / O3

COOH
OH

COOH
OH

COOH
OH

OH
OH

SA 2,3-DHB 2,5-DHB Catechol

+ +
OH HO

Scheme 5. Reaction of salicylic acid (SA) with OH and O3.

Table 1. Analytical techniques used for the detection of short-lived RONS created in plasma-air-water systems.   

Analytical 
technique

Plasma RONS 
detected

Advantages Limitations

UV-Vis 
spectrophotometr
y, fluorimetry

OH, O2-, O, O3, 
ONOO-

Analysed compounds are stable. 
Presence of many RONS can be 
visualised. Non-destructive. 

Indirect. Highly non-selective degradation of dyes. 
Non-selective induction of chemiluminescence or 
fluorescence. 

HPLC, LC-
MS(/MS)

OH, O2-/OOH, 
O, O3, NO, 
NO2, ONOO-

Analysed compounds are (often) 
stable.

Indirect. Non-selectivity of the reactions of chemical 
probes with plasma-induced RONS.  

ESR spectroscopy OH, O2-/OOH, 
O, O3, 1O2, H, 
NO, ONOO-

The most direct method. More 
selective than others. Many radicals 
can be identified simultaneously from 
the same spectrum. Non-destructive.

Non-selective formation of nitroxides from 
hydroxylamine spin probes. Non-selective 
formation of spin trap adducts. Oxidative 
degradation of spin traps by plasma RONS. Decay 
of spin adducts by plasma RONS: inherent, nitroxide 
reactions, oxidation of PTI back to PTIO.

4. Summary and perspectives.
In this Feature Article, we discussed the possibilities of the 

main analytical methods used for the detection of short-lived 
RONS induced by CAP in liquids. Many of these methods are 
directly adapted from biological and chemical systems. In these 
environments, the analytical techniques are based on spin 
trapping or substrate (‘probe’) modification with subsequent 
LC, MS, ESR, or UV-Vis analyses. 

The main difference between cold plasma-air-water systems 
and traditional biological and chemical systems is that in CAP, 
all (or many) types of RONS are present at the same time. This 
results in non-selective formation of products (e.g. 
hydroxylation of phenol), non-selective induction/decay of 
colour or fluorescence (methylene blue reactions with OH and 
O3), enhanced degradation of spin traps/spin adducts, etc. This 
is summarised in Table 1. 

We also discuss the limitations of the methods in general, 
applicable in a wide range of systems with short-lived RONS. 
Some of the limitations of e.g. spin trapping are universal, and 
should be taken into account during analysis. 

Besides the short-lived RONS discussed above, some other 
may be present in plasma-treated liquids. and their detection 
and quantification is required. For example, peroxynitrite 
(ONOO-) is a ‘sought-after’ chemical compound in CAP-water 
systems,112 but peroxynitrate (OONOO-) is rarely mentioned, 
although it can be responsible for most of the bactericidal action 
of plasma in liquids.113 Solvated electrons delivered by CAP can 
initiate radical reactions,18,114 but their detection in liquids so far 
has been limited to spectroscopy with a laser diode array115 and 
pH measurements in a chlor-alkali process.116 Like peroxynitric 
acid117 or other RONS, free electrons are induced in the media 
only by some types of CAP: this depends on the configuration 
of the CAP system.5,32,33,35 

This means that not all plasmas are created equal: the 
‘cocktail’ of reactive species produced in a dielectric barrier 
discharge (DBD) can be different from that created by an Ar 
plasma jet. For example, 1O2 is created only by some plasma 
jets,72 but not by others.33 This is not to mention various 

configurations of the jets or DBDs.35 Accordingly, the 
analytical methods should be selected as best suited not only for 
specific reactive species, but also for the specific CAP-air-water 
system. The limitations of the analysis methods are general, but 
in some cases RONS that can interfere with the analytical 
procedures are simply not present. 

Careful choice of analytical methods, optimisation of 
analytical procedures, and comprehensive control experiments 
can provide an expanded view of the plasma-air-water systems. 
The complete understanding of such systems, using the 
expertise from chemistry, biology, and physics, is required for 
their further development and tailored applications in 
chemistry, agriculture, food industry, and medicine. 
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Figure 1. Cold atmospheric pressure plasma in contact with liquids produces various reactive oxygen and 
nitrogen species for diverse chemical, agricultural and medical applications.   
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Figure 2. Two methods of plasma application, RONS in solutions and main analytical techniques used for 
their detection. 
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