|
Record |
Links |
|
Author |
Yusupov, M.; Dewaele, D.; Attri, P.; Khalilov, U.; Sobott, F.; Bogaerts, A. |
|
|
Title |
Molecular understanding of the possible mechanisms of oligosaccharide oxidation by cold plasma |
Type |
A1 Journal article |
|
Year |
2022 |
Publication |
Plasma processes and polymers |
Abbreviated Journal |
Plasma Process Polym |
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT) |
|
|
Abstract |
Cold atmospheric plasma (CAP) is a promising technology for several medical applications, including the removal of biofilms from surfaces. However, the molecular mechanisms of CAP treatment are still poorly understood. Here we unravel the possible mechanisms of CAP‐induced oxidation of oligosaccharides, employing reactive molecular dynamics simulations based on the density functional‐tight binding potential. Specifically, we find that the interaction of oxygen atoms (used as CAP‐generated reactive species) with cellotriose (a model system for the oligosaccharides) can break structurally important glycosidic bonds, which subsequently leads to the disruption of the oligosaccharide molecule. The overall results help to shed light on our experimental evidence for cellotriose CAP. This oxidation by study provides atomic‐level insight into the onset of plasma‐induced removal of biofilms, as oligosaccharides are one of the main components of biofilm. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000865844800001 |
Publication Date |
2022-10-11 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1612-8850 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
3.5 |
Times cited |
|
Open Access |
OpenAccess |
|
|
Notes |
Fonds Wetenschappelijk Onderzoek, 1200219N ; They also acknowledge the Turing HPC infrastructure at the CalcUA core facility of the University of Antwerp (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI), and the UA, where all computational work was performed. This study was financially supported by the Research Foundation–Flanders (FWO) (grant number 1200219N). |
Approved |
Most recent IF: 3.5 |
|
|
Call Number |
PLASMANT @ plasmant @c:irua:191404 |
Serial |
7113 |
|
Permanent link to this record |