|
Record |
Links |
|
Author |
Ramakers, M.; Trenchev, G.; Heijkers, S.; Wang, W.; Bogaerts, A. |
|
|
Title |
Gliding Arc Plasmatron: Providing an Alternative Method for Carbon Dioxide Conversion |
Type |
A1 Journal article |
|
Year |
2017 |
Publication |
Chemsuschem |
Abbreviated Journal |
Chemsuschem |
|
|
Volume |
10 |
Issue |
10 |
Pages |
2642-2652 |
|
|
Keywords |
A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT) |
|
|
Abstract |
Low-temperature plasmas are gaining a lot of interest for environmental and energy applications. A large research field in these applications is the conversion of CO2 into chemicals and fuels. Since CO2 is a very stable molecule, a key performance indicator for the research on plasma-based CO2 conversion is the energy efficiency. Until now, the energy efficiency in atmospheric plasma reactors is quite low, and therefore we employ here a novel type of plasma reactor, the gliding arc plasmatron (GAP). This paper provides a detailed experimental and computational study of the CO2 conversion, as well as the energy cost and efficiency in a GAP. A comparison with thermal conversion, other plasma types and other novel CO2 conversion technologies is made to find out whether this novel plasma reactor can provide a significant contribution to the much-needed efficient conversion of CO2. From these comparisons it becomes evident that our results are less than a factor of two away from being cost competitive and already outperform several other new technologies. Furthermore, we indicate how the performance of the GAP can still be improved by further exploiting its non-equilibrium character. Hence, it is clear that the GAP is very promising for CO2 conversion. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000403934400014 |
Publication Date |
2017-05-22 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1864-5631 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
7.226 |
Times cited |
42 |
Open Access |
OpenAccess |
|
|
Notes |
Federaal Wetenschapsbeleid; Fonds Wetenschappelijk Onderzoek, G.0383.16N 11U5316N ; Horizon 2020, 657304 ; |
Approved |
Most recent IF: 7.226 |
|
|
Call Number |
PLASMANT @ plasmant @ c:irua:144184 |
Serial |
4616 |
|
Permanent link to this record |