|
Record |
Links |
|
Author |
Andersen, Ja.; Christensen, Jm.; Østberg, M.; Bogaerts, A.; Jensen, Ad. |
|
|
Title |
Plasma-catalytic dry reforming of methane: Screening of catalytic materials in a coaxial packed-bed DBD reactor |
Type |
A1 Journal article |
|
Year |
2020 |
Publication |
Chemical Engineering Journal |
Abbreviated Journal |
Chem Eng J |
|
|
Volume |
397 |
Issue |
|
Pages |
125519 |
|
|
Keywords |
A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT) |
|
|
Abstract |
The combination of catalysis with non-thermal plasma is a promising alternative to thermal catalysis. A dielectric-barrier discharge reactor was used to study plasma-catalytic dry reforming of methane at ambient pressure and temperature and a fixed plasma power of 45 W. The effect of different catalytic packing materials was evaluated in terms of conversion, product selectivity, and energy efficiency. The conversion of CO2 (~22%) and CH4 (~33%) were found to be similar in plasma-only and when introducing packing materials in plasma. The main reason is the shorter residence time of the gas due to packing geometry, when compared at identical flow rates. H2, CO, C2-C4 hydrocarbons, and oxygenates were identified in the product gas. High selectivity towards H2 and CO were found for all catalysts and plasma-only, with a H2/CO molar ratio of ~0.9. The lowest syngas selectivity was obtained with Cu/Al2O3 (~66%), which instead, had the highest alcohol selectivity (~3.6%). |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000542296100011 |
Publication Date |
2020-05-17 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1385-8947 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
15.1 |
Times cited |
|
Open Access |
|
|
|
Notes |
Department of Chemical and Biochemical Engineering, Technical University of Denmark; We thank Haldor Topsoe A/S for providing all the catalytic materials used and the Department of Chemical and Biochemical Engineering, Technical University of Denmark, for funding this project. |
Approved |
Most recent IF: 15.1; 2020 IF: 6.216 |
|
|
Call Number |
PLASMANT @ plasmant @c:irua:170613 |
Serial |
6406 |
|
Permanent link to this record |