|
Record |
Links |
|
Author |
Uytdenhouwen, Y.; Bal, Km.; Michielsen, I.; Neyts, Ec.; Meynen, V.; Cool, P.; Bogaerts, A. |
|
|
Title |
How process parameters and packing materials tune chemical equilibrium and kinetics in plasma-based CO2 conversion |
Type |
A1 Journal article |
|
Year |
2019 |
Publication |
Chemical engineering journal |
Abbreviated Journal |
Chem Eng J |
|
|
Volume |
372 |
Issue |
|
Pages |
1253-1264 |
|
|
Keywords |
A1 Journal article; Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT) |
|
|
Abstract |
Plasma (catalysis) reactors are increasingly being used for gas-based chemical conversions, providing an alternative method of energy delivery to the molecules. In this work we explore whether classical concepts such as
equilibrium constants, (overall) rate coefficients, and catalysis exist under plasma conditions. We specifically
investigate the existence of a so-called partial chemical equilibrium (PCE), and how process parameters and
packing properties influence this equilibrium, as well as the overall apparent rate coefficient, for CO2 splitting in
a DBD plasma reactor. The results show that a PCE can be reached, and that the position of the equilibrium, in
combination with the rate coefficient, greatly depends on the reactor parameters and operating conditions (i.e.,
power, pressure, and gap size). A higher power, higher pressure, or smaller gap size enhance both the equilibrium constant and the rate coefficient, although they cannot be independently tuned. Inserting a packing
material (non-porous SiO2 and ZrO2 spheres) in the reactor reveals interesting gap/material effects, where the
type of material dictates the position of the equilibrium and the rate (inhibition) independently. As a result, no
apparent synergistic effect or plasma-catalytic behaviour was observed for the non-porous packing materials
studied in this reaction. Within the investigated parameters, equilibrium conversions were obtained between 23
and 71%, while the rate coefficient varied between 0.027 s−1 and 0.17 s−1. This method of analysis can provide
a more fundamental insight in the overall reaction kinetics of (catalytic) plasma-based gas conversion, in order
to be able to distinguish plasma effects from true catalytic enhancement. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000471670400116 |
Publication Date |
2019-05-08 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1385-8947 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
6.216 |
Times cited |
3 |
Open Access |
Not_Open_Access: Available from 05.05.2021
|
|
|
Notes |
European Fund for Regional Development; FWOFWO, G.0254.14N ; University of Antwerp; FWO-FlandersFWO-Flanders, 11V8915N ; The authors acknowledge financial support from the European Fund for Regional Development through the cross-border collaborative Interreg V program Flanders-the Netherlands (project EnOp), the Fund for Scientific Research (FWO; Grant Number: G.0254.14N), a TOP-BOF project and an IOF-SBO (SynCO2Chem) project from the University of Antwerp. K. M. B. was funded as a PhD fellow (aspirant) of the FWOFlanders (Fund for Scientific Research-Flanders), Grant 11V8915N. |
Approved |
Most recent IF: 6.216 |
|
|
Call Number |
PLASMANT @ plasmant @UA @ admin @ c:irua:159979 |
Serial |
5171 |
|
Permanent link to this record |