toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Compernolle, T.; Van Passel, S.; Huisman, K.; Kort, P. pdf  url
doi  openurl
  Title The option to abandon : stimulating innovative groundwater remediation technologies characterized by technological uncertainty Type A1 Journal article
  Year 2014 Publication Science Of The Total Environment Abbreviated Journal Sci Total Environ  
  Volume 496 Issue Pages 63-74  
  Keywords A1 Journal article; Economics  
  Abstract Many studies on technology adoption demonstrate that uncertainty leads to a postponement of investments by integrating a wait option in the economic analysis. The aim of this study however is to demonstrate how the investment in new technologies can be stimulated by integrating an option to abandon. Furthermore, this real option analysis not only considers the ex ante decision analysis of the investment in a new technology under uncertainty, but also allows for an ex post evaluation of the investment. Based on a case study regarding the adoption of an innovative groundwater remediation strategy, it is demonstrated that when the option to abandon the innovative technology is taken into account, the decision maker decides to invest in this technology, while at the same time it determines an optimal timing to abandon the technology if its operation proves to be inefficient. To reduce uncertainty about the effectiveness of groundwater remediation technologies, samples are taken. Our analysis shows that when the initial belief in an effective innovative technology is low, it is important that these samples provide correct information in order to justify the adoption of the innovative technology. (C) 2014 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000342245600009 Publication Date 2014-07-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Additional Links UA library record; WoS full record; WoS citing articles; WoS full record; WoS citing articles  
  Impact Factor (down) 4.9 Times cited 4 Open Access  
  Notes ; ; Approved Most recent IF: 4.9; 2014 IF: 4.099  
  Call Number UA @ admin @ c:irua:119931 Serial 6269  
Permanent link to this record
 

 
Author Moretti, M.; Van Passel, S.; Camposeo, S.; Pedrero, F.; Dogot, T.; Lebailly, P.; Vivaldi, G.A. pdf  doi
openurl 
  Title Modelling environmental impacts of treated municipal wastewater reuse for tree crops irrigation in the Mediterranean coastal region Type A1 Journal article
  Year 2019 Publication Science Of The Total Environment Abbreviated Journal Sci Total Environ  
  Volume 660 Issue 660 Pages 1513-1521  
  Keywords A1 Journal article; Economics; Engineering sciences. Technology; Engineering Management (ENM)  
  Abstract Wastewater reuse provides valuable solutions to solve the societal challenges of decreasing availability and limiting access to secure water resources. The present study quantifies the environmental performance of nectarine orchards irrigation using treated municipal wastewater (TMW) and surface water using a unique dataset based on field experimental data. Climate change, toxicity (for human and freshwater), eutrophication (marine and freshwater) and acidification impacts were analysed using the impact assessment method suggested by the International Reference Life Cycle Data System (ILCD). The water footprint associated to the life cycles of each system has been estimated using the Available WAter REmaining (AWARE) method. Monte Carlo simulation was used to assess data uncertainty. The irrigation of nectarine orchards using TMW performs better than the irrigation using surface water for eutrophication impact categories. Compared with surface water resources, the potential impacts of TMW reuse in agriculture on climate change and toxicity are affected by the wastewater treatment phase (WWT). Only eutrophication and acidification burdens are generated by in-field substitution of surface water with TMW. Considering human and ecosystem water demand, the irrigation with TMW increases water consumption of 19.12 m3 per kg of nectarine produced. Whereas, it shows a positive contribution to water stress (−0.19 m3) if only human water demand is considered. This study provides important results that allow for a better understanding of the potential environmental consequences of TMW reuse in agriculture. It suggests that embracing the type of WWTs, the replacement of fertilizers, the effects on water scarcity and ecosystem quality might be useful to redefine water reuse regulations and increase public acceptance for the reuse of TMW in agriculture. Moreover, this study reveals the need for developing consensus and standardized guidance for life cycle analysis of water reuse applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000457725700145 Publication Date 2019-01-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Additional Links UA library record; WoS full record; WoS citing articles; WoS full record; WoS citing articles  
  Impact Factor (down) 4.9 Times cited 4 Open Access  
  Notes ; The authors would like to thank the EU, MIUR and FNRS for funding, in the frame of the collaborative international Consortium DESERT financed under the ERA-NET WaterWorks2014 Cofunded Call. This ERA-NET is an integral part of the 2015 Joint Activities developed by the “Water Challenges for a Changing World Joint Programme Initiative (Water JPI)”. G.A. Vivaldi would like to thank also the Regione Puglia for the support from the “Fondo di Sviluppo e Coesione” 2007-2013 – APQ Ricerca Regione Puglia “Programma regionale a sostegno della specializzazione intelligente e della sostenibilita sociale ed ambientale – FutureInResearch”. ; Approved Most recent IF: 4.9  
  Call Number UA @ admin @ c:irua:156931 Serial 6227  
Permanent link to this record
 

 
Author Chelan, M.M.; Alijanpour, A.; Barani, H.; Motamedi, J.; Azadi, H.; Van Passel, S. pdf  doi
openurl 
  Title Economic sustainability assessment in semi-steppe rangelands Type A1 Journal article
  Year 2018 Publication Science Of The Total Environment Abbreviated Journal Sci Total Environ  
  Volume 637-638 Issue 637-638 Pages 112-119  
  Keywords A1 Journal article; Engineering Management (ENM)  
  Abstract This study was conducted to determine indices and components of economic sustainability assessment in the pastoral units of Sahand summer rangelands. The method was based on descriptive-analytical survey (experts and researchers) with questionnaires. Analysis of variance showed that the mean values of economic components are significantly different from each other and the efficiency component has the highest mean value (0.57). The analysis of rangeland pastoral unitswith the technique for order-preference by similarity to ideal solution (TOPSIS) indicated that from an economic sustainability standpoint, Garehgol (Ci = 0.519) and Badir Khan (Ci = 0.129), pastoral units ranked first and last, respectively. This study provides a clear understanding of existing resources and opportunities for policy makers that is crucial to approach economic sustainable development. Accordingly, this study can help better define sustainable development goals and monitor the progress of achieving them. (C) 2018 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000436605400012 Publication Date 2018-05-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Additional Links UA library record; WoS full record; WoS citing articles; WoS full record; WoS citing articles  
  Impact Factor (down) 4.9 Times cited 7 Open Access  
  Notes ; ; Approved Most recent IF: 4.9  
  Call Number UA @ admin @ c:irua:153617 Serial 6190  
Permanent link to this record
 

 
Author Thomassen, G.; Huysveld, S.; Boone, L.; Vilain, C.; Geysen, D.; Huysman, K.; Cools, B.; Dewulf, J. url  doi
openurl 
  Title The environmental impact of household's water use: A case study in Flanders assessing various water sources, production methods and consumption patterns Type A1 Journal Article
  Year 2021 Publication Science Of The Total Environment Abbreviated Journal Sci Total Environ  
  Volume 770 Issue Pages 145398  
  Keywords A1 Journal Article; Engineering Management (ENM) ;  
  Abstract Responsible water use and sustainable consumption and production are high on the agenda of multiple stakeholders. Different water supply sources are available, including tap water, bottled water, domestically harvested rainwater and domestically abstracted groundwater. The extent to which each of these water supply sources is used, differs over consumption patterns in various housing types, being detached houses, semi-detached houses, terraced houses and apartments. To identify the environmental impact of a household's water use and potential environmental impact reduction strategies, a holistic assessment is required. In this paper, the environmental impact of a household's water use in Flanders (Belgium) was assessed including four different water supply sources and four different consumption patterns by means of a life cycle assessment. The outcomes of this study reveal a large difference between the environmental impact of bottled water use, having a global warming impact of 259 kg CO2-eq.·m−3, compared to the other three supply sources. Tap water supply had the lowest global warming impact (0.17 kg CO2-eq.·m−3) and resource footprint (6.51 MJex·m−3) of all water supply sources. The most efficient strategy to reduce the environmental impact of household's water use is to shift the water consumption from bottled to tap water consumption. This would induce a reduction in global warming impact of the water use of an inhabitant in Flanders by on average 80%, saving 0.1 kg CO2-eq.·day−1 in case of groundwater-based tap water. These results provide insights into sustainable water use for multiple consumption patterns and can be used to better frame the environmental benefits of tap water use.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2021-01-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Additional Links  
  Impact Factor (down) 4.9 Times cited Open Access Not_Open_Access  
  Notes This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. Approved Most recent IF: 4.9  
  Call Number ENM @ enm @ Serial 6681  
Permanent link to this record
 

 
Author Sharafi, L.; Zarafshani, K.; Keshavarz, M.; Azadi, H.; Van Passel, S. pdf  url
doi  openurl
  Title Farmers' decision to use drought early warning system in developing countries Type A1 Journal article
  Year 2021 Publication Science Of The Total Environment Abbreviated Journal Sci Total Environ  
  Volume 758 Issue Pages 142761  
  Keywords A1 Journal article; Engineering Management (ENM)  
  Abstract Drought is a persistent, sluggish natural disaster in developing countries that has generated a financial burden and an unstable climate. Farmers should adopt early warning systems (EWS) in their strategies for monitoring drought to reduce its serious consequences. However, farmers in developing countries are reluctant to use EWS as their management strategies. Hence, the aim of this study was to investigate the decision of farmers to use climate knowledge through the model of farming activity in Kermanshah Township, Iran. A surveyor questionnaire was used to gather data from 370 wheat farmers using random sampling methods inmulti-stage clusters. Results revealed that the decision to use climate information is affected by personal factors, attitude towards climate information, objectives of using climate information, and external/physical farming factors. The result of this study has implications for drought management practitioners. To be specific, the results can aid policymakers to design early alert programs to minimize the risk of drought and thus move from conventional to climate smart agriculture. (C) 2020 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000605623800001 Publication Date 2020-10-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 4.9 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.9  
  Call Number UA @ admin @ c:irua:176030 Serial 6924  
Permanent link to this record
 

 
Author Muys, M.; Phukan, R.; Brader, G.; Samad, A.; Moretti, M.; Haiden, B.; Pluchon, S.; Roest, K.; Vlaeminck, S.E.; Spiller, M. url  doi
openurl 
  Title A systematic comparison of commercially produced struvite : quantities, qualities and soil-maize phosphorus availability Type A1 Journal article
  Year 2021 Publication Science Of The Total Environment Abbreviated Journal Sci Total Environ  
  Volume 756 Issue Pages 143726-12  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Engineering Management (ENM)  
  Abstract Production of struvite (MgNH4PO4·6H2O) from waste streams is increasingly implemented to recover phosphorus (P), which is listed as a critical raw material in the European Union (EU). To facilitate EU-wide trade of P-containing secondary raw materials such as struvite, the EU issued a revised fertilizer regulation in 2019. A comprehensive overview of the supply of struvite and its quality is presently missing. This study aimed: i) to determine the current EU struvite production volumes, ii) to evaluate all legislated physicochemical characteristics and pathogen content of European struvite against newly set regulatory limits, and iii) to compare not-regulated struvite characteristics. It is estimated that in 2020, between 990 and 1250 ton P are recovered as struvite in the EU. Struvite from 24 European production plants, accounting for 30% of the 80 struvite installations worldwide was sampled. Three samples failed the physicochemical legal limits; one had a P content of <7% and three exceeded the organic carbon content of 3% dry weight (DW). Mineralogical analysis revealed that six samples had a struvite content of 80–90% DW, and 13 samples a content of >90% DW. All samples showed a heavy metal content below the legal limits. Microbiological analyses indicated that struvite may exceed certain legal limits. Differences in morphology and particle size distribution were observed for struvite sourced from digestate (rod shaped; transparent; 82 mass% < 1 mm), dewatering liquor (spherical; opaque; 65 mass% 1–2 mm) and effluent from upflow anaerobic sludge blanket reactor processing potato wastewater (spherical; opaque; 51 mass% < 1 mm and 34 mass% > 2 mm). A uniform soil-plant P-availability pattern of 3.5–6.5 mg P/L soil/d over a 28 days sampling period was observed. No differences for plant biomass yield were observed. In conclusion, the results highlight the suitability of most struvite to enter the EU fertilizer market.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000603487500029 Publication Date 2020-11-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697; 1879-1026 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 4.9 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.9  
  Call Number UA @ admin @ c:irua:173944 Serial 8638  
Permanent link to this record
 

 
Author Andersen, Ja.; van 't Veer, K.; Christensen, Jm.; Østberg, M.; Bogaerts, A.; Jensen, Ad. url  doi
openurl 
  Title Ammonia decomposition in a dielectric barrier discharge plasma: Insights from experiments and kinetic modeling Type A1 Journal article
  Year 2023 Publication Chemical engineering science Abbreviated Journal  
  Volume 271 Issue Pages 118550  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Utilizing ammonia as a storage medium for hydrogen is currently receiving increased attention. A possible method to retrieve the hydrogen is by plasma-catalytic decomposition. In this work, we combined an experimental study, using a dielectric barrier discharge plasma reactor, with a plasma kinetic model, to get insights into the decomposition mechanism. The experimental results revealed a similar effect on the ammonia conversion when changing the flow rate and power, where increasing the specific energy input (higher power or lower flow rate) gave an increased conversion. A conversion as high as 82 % was achieved at a specific energy input of 18 kJ/Nl. Furthermore, when changing the discharge volume from 31 to 10 cm3, a change in the plasma distribution factor from 0.2 to 0.1 was needed in the model to best describe the conversions of the experiments. This means that a smaller plasma volume caused a higher transfer of energy through micro-discharges (non-uniform plasma), which was found to promote the decomposition of ammonia. These results indicate that it is the collisions between NH3 and the high-energy electrons that initiate the decomposition. Moreover, the rate of ammonia destruction was found by the model to be in the order of 1022 molecules/(cm3 s) during the micro-discharges, which is 5 to 6 orders of magnitude higher than in the afterglows. A considerable re-formation of ammonia was found to take place in the afterglows, limiting the overall conversion. In addition, the model revealed that implementation of packing material in the plasma introduced high concentrations of surface-bound hydrogen atoms, which introduced an additional ammonia re-formation pathway through an Eley-Rideal reaction with gas phase NH2. Furthermore, a more uniform plasma is predicted in the presence of MgAl2O4, which leads to a lower average electron energy during micro-discharges and a lower conversion (37 %) at a comparable residence time for the plasma alone (51 %).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000946293200001 Publication Date 2023-02-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0009-2509 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 4.7 Times cited Open Access OpenAccess  
  Notes We thank Topsoe A/S for providing the packing material used, the research group PLASMANT (UAntwerpen) for sharing their plasma kinetic model and allowing us to perform the calculations on their clusters, and the Department of Chemical and Biochemical Engineering, Technical University of Denmark, for funding this project. Approved Most recent IF: 4.7; 2023 IF: 2.895  
  Call Number PLASMANT @ plasmant @c:irua:195204 Serial 7237  
Permanent link to this record
 

 
Author Meng, S.; Li, S.; Sun, S.; Bogaerts, A.; Liu, Y.; Yi, Y. pdf  url
doi  openurl
  Title NH3 decomposition for H2 production by thermal and plasma catalysis using bimetallic catalysts Type A1 Journal article
  Year 2024 Publication Chemical engineering science Abbreviated Journal Chemical Engineering Science  
  Volume 283 Issue Pages 119449  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma catalysis has emerged as a promising approach for driving thermodynamically unfavorable chemical

reactions. Nevertheless, comprehending the mechanisms involved remains a challenge, leading to uncertainty

about whether the optimal catalyst in plasma catalysis aligns with that in thermal catalysis. In this research, we

explore this question by studying monometallic catalysts (Fe, Co, Ni and Mo) and bimetallic catalysts (Fe-Co, Mo-

Co, Fe-Ni and Mo-Ni) in both thermal catalytic and plasma catalytic NH3 decomposition. Our findings reveal that

the Fe-Co bimetallic catalyst exhibits the highest activity in thermal catalysis, the Fe-Ni bimetallic catalyst

outperforms others in plasma catalysis, indicating a discrepancy between the optimal catalysts for the two

catalytic modes in NH3 decomposition. Comprehensive catalyst characterization, kinetic analysis, temperature

program surface reaction experiments and plasma diagnosis are employed to discuss the key factors influencing

NH3 decomposition performance.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001105312500001 Publication Date 2023-10-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0009-2509 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 4.7 Times cited Open Access Not_Open_Access  
  Notes Universiteit Antwerpen, 32249 ; National Natural Science Foundation of China, 21503032 ; PetroChina Innovation Foundation, 2018D-5007-0501 ; Approved Most recent IF: 4.7; 2024 IF: 2.895  
  Call Number PLASMANT @ plasmant @c:irua:201009 Serial 8967  
Permanent link to this record
 

 
Author Kolev, I.; Bogaerts, A. pdf  doi
openurl 
  Title Numerical study of the sputtering in a dc magnetron Type A1 Journal article
  Year 2009 Publication Journal of vacuum science and technology: A: vacuum surfaces and films Abbreviated Journal J Phys Chem C  
  Volume 27 Issue 1 Pages 20-28  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Molecular dynamics simulations were used to investigate the size-dependent melting mechanism of nickel nanoclusters of various sizes. The melting process was monitored by the caloric curve, the overall cluster Lindemann index, and the atomic Lindemann index. Size-dependent melting temperatures were determined, and the correct linear dependence on inverse diameter was recovered. We found that the melting mechanism gradually changes from dynamic coexistence melting to surface melting with increasing cluster size. These findings are of importance in better understanding carbon nanotube growth by catalytic chemical vapor deposition as the phase state of the catalyst nanoparticle codetermines the growth mechanism.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000263299600018 Publication Date 2009-02-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 4.536 Times cited 66 Open Access  
  Notes Approved Most recent IF: 4.536; 2009 IF: 4.224  
  Call Number UA @ lucian @ c:irua:71634 Serial 2411  
Permanent link to this record
 

 
Author Kaminsky, F.V.; Ryabchikov, I.D.; McCammon, C.A.; Longo, M.; Abakumov, A.M.; Turner, S.; Heidari, H. pdf  doi
openurl 
  Title Oxidation potential in the Earth's lower mantle as recorded by ferropericlase inclusions in diamond Type A1 Journal article
  Year 2015 Publication Earth and planetary science letters Abbreviated Journal Earth Planet Sc Lett  
  Volume 417 Issue 417 Pages 49-56  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Ferropericlase (fPer) inclusions from kimberlitic lower-mantle diamonds recovered in the Juina area, Mato Grosso State, Brazil were analyzed with transmission electron microscopy, electron energy-loss spectroscopy and the flank method. The presence of exsolved non-stoichiometric Fe3+-enriched clusters, varying in size from 1-2 nm to 10-15 nm and comprising similar to 3.64 vol.% of fPer was established. The oxidation conditions necessary for fPer formation within the uppermost lower mantle (P = 25 GPa, T = 1960 K) vary over a wide range: Delta log f(o2) (IW) from 1.58 to 7.76 (Delta = 6.2), reaching the fayalite-magnetite-quartz (FMQ) oxygen buffer position. This agrees with the identification of carbonates and free silica among inclusions within lower-mantle Juina diamonds. On the other hand, at the base of the lower mantle Delta log f(o2) values may lie at and below the iron-wustite (IW) oxygen buffer. Hence, the variations of Delta log f(o2) values within the entire sequence of the lower mantle may reach ten logarithmic units, varying from the IW buffer to the FMQ buffer values. The similarity between lower- and upper-mantle redox conditions supports whole mantle convection, as already suggested on the basis of nitrogen and carbon isotopic compositions in lower- and upper-mantle diamonds. The mechanisms responsible for redox differentiation in the lower mantle may include subduction of oxidized crustal material, mechanical separation of metallic phase(s) and silicate-oxide mineral assemblages enriched in ferric iron, as well as transfer of fused silicate-oxide material presumably also enriched in ferric iron through the mantle. (C) 2015 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000351799400006 Publication Date 2015-03-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0012-821X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 4.409 Times cited 23 Open Access  
  Notes Approved Most recent IF: 4.409; 2015 IF: 4.734  
  Call Number c:irua:125451 Serial 2539  
Permanent link to this record
 

 
Author Brenker, F.E.; Vollmer, C.; Vincze, L.; Vekemans, B.; Szymanski, A.; Janssens, K.; Szaloki, I.; Nasdala, L.; Joswig, W.; Kaminsky, F. doi  openurl
  Title Carbonates from the lower part of transition zone or even the lower mantle Type A1 Journal article
  Year 2007 Publication Earth and planetary science letters Abbreviated Journal Earth Planet Sc Lett  
  Volume 260 Issue 1/2 Pages 1-9  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Effective CO2-storage in the shallow solid Earth mainly occurs by the formation of carbonates. Although the possibility of transport and storage of carbonates to great depth is demonstrated experimentally, ultra-deep mantle carbonates have not been found before. Applying several in situ analytical techniques on inclusions in diamonds from Juina (Brazil) originating from the lower part of the transition zone (> 580 km) or even the lower mantle (> 670 km), reveal the existence of deep Earth carbonates. These finding unquestionably show that at least locally carbonates exist within the deep Earth and may indicate that the Earth's global CO2-cycle has an ultra-deep extension.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000248883300001 Publication Date 2007-03-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0012-821x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 4.409 Times cited 156 Open Access  
  Notes Approved Most recent IF: 4.409; 2007 IF: 3.873  
  Call Number UA @ admin @ c:irua:71387 Serial 5496  
Permanent link to this record
 

 
Author Singh, B.R.; Timsina, Y.N.; Lind, O.C.; Cagno, S.; Janssens, K. url  doi
openurl 
  Title Zinc and iron concentration as affected by nitrogen fertilization and their localization in wheat grain Type A1 Journal article
  Year 2018 Publication Frontiers in plant science Abbreviated Journal Front Plant Sci  
  Volume 9 Issue 9 Pages  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Nearly half of the world cereal production comes from soils low or marginal in plant available zinc, leading to unsustainable and poor quality grain production. Therefore, the effects of nitrogen (N) rate and application time on zinc (Zn) and iron (Fe) concentration in wheat grain were investigated. Wheat (Triticum aestivum var. Krabat) was grown in a growth chamber with 8 and 16 h of day and night periods, respectively. The N rates were 29, 43, and 57 mg N kg(-1) soil, equivalent to 80, 120, and 160 kg N ha(-1). Zinc and Fe were applied at 10 mg kg(-1) growth media. In one of the N treatments, additional Zn and Fe through foliar spray (6 mg of Zn or Fe in 10 ml water / pot) was applied. Micro-analytical localization of Zn and Fe within grain was performed using scanning macro-X-ray fluorescence (MA-XRF) and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). The following data were obtained: grain and straw yield pot 1, 1000 grains weight, number of grains pot 1, whole grain protein content, concentration of Zn and Fe in the grains. Grain yield increased from 80 to 120 kg N ha(-1) rates only and decreased at 160 kg N ha(-1) g. Relatively higher protein content and Zn and Fe concentration in the grain were recorded with the split N application of 160 kg N ha(-1). Soil and foliar supply of Zn and Fe (Zn + Fes+f), with a single application of 120 kg N ha(-1) N at sowing, increased the concentration of Zn by 46% and of Fe by 35%, as compared to their growth media application only. Line scans of freshly cut areas of sliced grains showed co-localization of Zn and Fe within germ, crease and aleurone. We thus conclude that split application of N at 160 kg ha(-1) at sowing and stem elongation, in combination with soil and foliar application of Zn and Fe, can be a good agricultural practice to enhance protein content and the Zn and Fe concentration in grain.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000427034400002 Publication Date 2018-03-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1664-462x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 4.298 Times cited 8 Open Access  
  Notes ; The research part of this master study was financed by the project “Mineral Improved Food and Feed Crops for Human and Animal Health” (Project No. 332160UA) and by a grant from the Norwegian Ministry of Foreign Affairs under the Program for Higher Education, Research and Development (HERD) in Western Balkan. The financial assistance for conducting this study is gratefully acknowledged. We also acknowledge the assistance by CERAD: this study has been funded by the Norwegian Research Council through its Centre of Excellence (CoE) funding scheme (Project No. 223268/F50). This research was supported by the Hercules Foundation (Brussels, Belgium) under grant AUHA09004 and FWO (Brussels, Belgium) Project Nos. G.0C12.13 and G.01769.09. ; Approved Most recent IF: 4.298  
  Call Number UA @ admin @ c:irua:149859 Serial 5924  
Permanent link to this record
 

 
Author Herregods, S.J.F.; Mertens, M.; Van Havenbergh, K.; Van Tendeloo, G.; Cool, P.; Buekenhoudt, A.; Meynen, V. pdf  doi
openurl 
  Title Controlling pore size and uniformity of mesoporous titania by early stage low temperature stabilization Type A1 Journal article
  Year 2013 Publication Journal of colloid and interface science Abbreviated Journal J Colloid Interf Sci  
  Volume 391 Issue Pages 36-44  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)  
  Abstract The control of the formation process during and after self-assembly is of utmost importance to achieve well structured, controlled template-assisted mesoporous titania materials with the desired properties for various applications via the evaporation induced self-assembly method (EISA). The present paper reports on the large influence of the thermal stabilization and successive template removal on the pore structure of a mesostructured TiO2 material using the diblock copolymer Brij 58 as surfactant. A controlled thermal stabilization (temperature and duration) allows one to tailor the final pore size and uniformity much more precise by influencing the self-assembly of the template. Moreover, also the successive thermal template removal needs to be controlled in order to avoid a structural collapse. N2-sorption, TGA, TEM, FT-Raman spectroscopy, and small angle wide angle XRD have been used to follow the crystal growth and mesostructure organization after thermal stabilization and after thermal template removal, revealing its effect on the final pore structure.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000312039000006 Publication Date 2012-10-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-9797; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 4.233 Times cited 12 Open Access  
  Notes Approved Most recent IF: 4.233; 2013 IF: 3.552  
  Call Number UA @ lucian @ c:irua:101757 Serial 506  
Permanent link to this record
 

 
Author Liu, J.; Jin, J.; Deng, Z.; Huang, S.Z.; Hu, Z.Y.; Wang, L.; Wang, C.; Chen, L.H.; Li, Y.; Van Tendeloo, G.; Su, B.L.; doi  openurl
  Title Tailoring CuO nanostructures for enhanced photocatalytic property Type A1 Journal article
  Year 2012 Publication Journal of colloid and interface science Abbreviated Journal J Colloid Interf Sci  
  Volume 384 Issue Pages 1-9  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We report on one-pot synthesis of various morphologies of CuO nanostructures. PEG200 as a structure directing reagent under the synergism of alkalinity by hydrothermal method has been employed to tailor the morphology of CuO nanostructures. The CuO products have been characterized by XRD, SEM, and TEM. The morphologies of the CuO nanostructures can be tuned from 10 (nanoseeds, nanoribbons) to 2D (nanoleaves) and to 3D (shuttle-like, shrimp-like, and nanoflowers) by changing the volume of PEG200 and the alkalinity in the reaction system. At neutral and relatively low alkalinity (OH-/Cu2+ <= 3), the addition of PEG200 can strongly influence the morphologies of the CuO nanostructures. At high alkalinity (OH/Cu2+ >= 4), PEG200 has no influence on the morphology of the CuO nanostructure. The different morphologies of the CuO nanostructures have been used for the photodecomposition of the pollutant rhodamine B (RhB) in water. The photocatalytic activity has been correlated with the different nanostructures of CuO. The 10 CuO nanoribbons exhibit the best performance on the RhB photodecomposition because of the exposed high surface energy {-121} crystal plane. The photocatalytic results show that the high energy surface planes of the CuO nanostructures mostly affect the photocatalytic activity rather than the morphology of the CuO nanostructures. Our synthesis method also shows it is possible to control the morphologies of nanostructures in a simple way. (C) 2012 Elsevier Inc. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000308337700001 Publication Date 2012-06-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-9797; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 4.233 Times cited 105 Open Access  
  Notes Approved Most recent IF: 4.233; 2012 IF: 3.172  
  Call Number UA @ lucian @ c:irua:101796 Serial 3468  
Permanent link to this record
 

 
Author Li, Y.; Yang, X.-Y.; Rooke, J.; Van Tendeloo, G.; Su, B.-L. doi  openurl
  Title Ultralong Cu(OH)(2) and CuO nanowire bundles: PEG200-directed crystal growth for enhanced photocatalytic performance Type A1 Journal article
  Year 2010 Publication Journal of colloid and interface science Abbreviated Journal J Colloid Interf Sci  
  Volume 348 Issue 2 Pages 303-312  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Ultralong Cu(OH)(2) and CuO nanowire bundles with lengths ranging from tens to hundreds of micrometers have been selectively synthesized on a large scale by a facile solution-phase method, using PEG200 as growth-directing agent. The growth mechanisms were investigated by monitoring the nanowire evolution process. The results showed that under the action of PEG200 molecules, the Cu(OH)(2) and CuO nanowires were first formed through oriented attachment of colloidal particles, then through side self-assembly leading to nanowire bundles, and finally to CuO nanoleaves. PEG200 plays a critical role in the synthesis of nanowires as it not only prevents the random aggregation of colloidal particles toward CuO nanoleaves but also helps to orientate nanowire growth by the coalescence and alignment in one direction of the colloidal particles. The concentration of OH(-) in the reaction system is also important for nanowire growth. In the absence of PEG200, nanoleaves are formed by an Ostwald ripening process. The band-gap value estimated from a UV-Vis absorption spectrum of CuO nanowire bundles is 2.32 eV. The photodegradation of a model pollutant, rhodamine B, by CuO nanowires and nanoleaves was compared with commercial nanopowders, showing that the as-synthesized ultralong CuO polycrystalline nanowire bundles have an enhanced photocatalytic activity with 87% decomposition of rhodamine B after an 8-h reaction, which was much higher than that of single-crystal nanoleaves (61%) and commercial nanopowders (32%). The origin of the high photocatalytic activity of these new polycrystalline CuO nanowire bundles has been discussed. This present work reveals that the (0 0 2) crystallographic surface is more favorable for photocatalytic decomposition of organic compounds and that these ultralong CuO nanowire bundles are potential candidates for photocatalysts in wastewater treatment. (C) 2010 Elsevier Inc. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000279968700002 Publication Date 2010-04-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-9797; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 4.233 Times cited 70 Open Access  
  Notes Approved Most recent IF: 4.233; 2010 IF: 3.068  
  Call Number UA @ lucian @ c:irua:95589 Serial 3795  
Permanent link to this record
 

 
Author Zhao, H.; Li, C.-F.; Hu, Z.-Y.; Liu, J.; Li, Y.; Hu, J.; Van Tendeloo, G.; Chen, L.-H.; Su, B.-L. pdf  doi
openurl 
  Title Size effect of bifunctional gold in hierarchical titanium oxide-gold-cadmium sulfide with slow photon effect for unprecedented visible-light hydrogen production Type A1 Journal article
  Year 2021 Publication Journal Of Colloid And Interface Science Abbreviated Journal J Colloid Interf Sci  
  Volume 604 Issue Pages 131-139  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Gold nanoparticles (Au NPs) with surface plasmonic resonance (SPR) effect and excellent internal electron transfer ability have widely been combined with semiconductors for photocatalysis. However, the in-depth effects of Au NPs in multicomponent photocatalysts have not been completely understood. Herein, ternary titanium oxide-gold-cadmium sulfide (TiO2-Au-CdS, TAC) photocatalysts, based on hierarchical TiO2 inverse opal photonic crystal structure with different Au NPs sizes have been designed to reveal the SPR effect and internal electron transfer of Au NPs in the presence of slow photon effect. It appears that the SPR effect and internal electron transfer ability of Au NPs, depending on their sizes, play a synergistic effect on the photocatalytic enhancement. The ternary TAC-10 photocatalyst with – 10 nm Au NPs demonstrates an unprecedented hydrogen evolution rate of 47.6 mmolh-1g 1 under visible-light, demonstrating- 48% enhancement comparing to the sample without slow photon effect. In particular, a 9.83% apparent quantum yield under 450 nm monochromatic light is achieved for TAC-10. A model is proposed and finite-difference time-domain (FDTD) simulations reveal the size influence of Au NPs in ternary TAC photocatalysts. This work suggests that the rational design of bifunctional Au NPs coupling with slow photon effect could largely promote hydrogen production from visible-light driven water splitting. (c) 2021 Elsevier Inc. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000704428600004 Publication Date 2021-07-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-9797 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 4.233 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 4.233  
  Call Number UA @ admin @ c:irua:182531 Serial 6886  
Permanent link to this record
 

 
Author Khalil-Allafi, J.; Amin-Ahmadi, B.; Zare, M. pdf  doi
openurl 
  Title Biocompatibility and corrosion behavior of the shape memory NiTi alloy in the physiological environments simulated with body fluids for medical applications Type A1 Journal article
  Year 2010 Publication Materials science and engineering: part C: biomimetic materials Abbreviated Journal Mat Sci Eng C-Mater  
  Volume 30 Issue 8 Pages 1112-1117  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Due to unique properties of NiTi shape memory alloys such as high corrosion resistance, biocompatibility, super elasticity and shape memory behavior, NiTi shape memory alloys are suitable materials for medical applications. Although TiO2 passive layer in these alloys can prevent releasing of nickel to the environment, high nickel content and stability of passive layer in these alloys are very debatable subjects. In this study a NiTi shape memory alloy with nominal composition of 50.7 atom% Ni was investigated by corrosion tests. Electrochemical tests were performed in two physiological environments of Ringer solution and NaCl 0.9% solution. Results indicate that the breakdown potential of the NiTi alloy in NaCl 0.9% solution is higher than that in Ringer solution. The results of Scanning Electron Microscope (SEM) reveal that low pitting corrosion occurred in Ringer solution compared with NaCl solution at potentiostatic tests. The pH value of the solutions increases after the electrochemical tests. The existence of hydride products in the X-ray diffraction analysis confirms the decrease of the concentration of hydrogen ion in solutions. Topographical evaluations show that corrosion products are nearly same in all samples. The biocompatibility tests were performed by reaction of mouse fibroblast cells (L929). The growth and development of cells for different times were measured by numbering the cells or statistics investigations. The figures of cells for different times showed natural growth of cells. The different of the cell numbers between the test specimen and control specimen was negligible; therefore it may be concluded that the NiTi shape memory alloy is not toxic in the physiological environments simulated with body fluids.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lausanne Editor  
  Language Wos 000282905600006 Publication Date 2010-06-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0928-4931; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 4.164 Times cited 34 Open Access  
  Notes Approved Most recent IF: 4.164; 2010 IF: 2.180  
  Call Number UA @ lucian @ c:irua:122039 Serial 242  
Permanent link to this record
 

 
Author Biró, L.P.; Khanh, N.Q.; Vértesy, Z.; Horváth, Z.E.; Osváth, Z.; Koós, A.; Gyulai, J.; Kocsonya, A.; Kónya, Z.; Zhang, X.B.; Van Tendeloo, G.; Fonseca, A.; Nagy, J.B.; pdf  doi
openurl 
  Title Catalyst traces and other impurities in chemically purified carbon nanotubes grown by CVD Type A1 Journal article
  Year 2002 Publication Materials science and engineering: part C: biomimetic materials T2 – EMRS Spring Meeting, JUN 05-08, 2001, STRASBOURG, FRANCE Abbreviated Journal Mat Sci Eng C-Mater  
  Volume 19 Issue 1-2 Pages 9-13  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Multiwall carbon nanotubes grown by the catalytic decomposition of acetylene over supported Co catalyst were subjected to wet and dry oxidation in order to remove the unwanted products and the catalyst traces. The effects of the purification treatment on the Co content was monitored by physical methods: Rutherford Backscattering Spectrometry (RBS). Particle Induced X-Ray Emission (PIXE) and X-Ray Fluorescence (XRF). The purified products were investigated by microscopic methods: TEM. Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS) and STM. The KMnO4/H2SO4 aqueous oxidation procedure was found to be effective in reducing the Co content while damaging only moderately the outer wall of the nanotubes. Treatment in HNO3/H2SO4 yields a bucky-paper like product and produces the increase of the Si and S content of the sample. (C) 2002 Elsevier Science B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lausanne Editor  
  Language Wos 000173080700003 Publication Date 2002-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0928-4931; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 4.164 Times cited 36 Open Access  
  Notes Approved Most recent IF: 4.164; 2002 IF: 0.734  
  Call Number UA @ lucian @ c:irua:102835 Serial 289  
Permanent link to this record
 

 
Author Neira, I.S.; Kolen'ko, Y.V.; Lebedev, O.I.; Van Tendeloo, G.; Gupta, H.S.; Matsushita, N.; Yoshimura, M.; Guitian, F. pdf  doi
openurl 
  Title Rational synthesis of a nanocrystalline calcium phosphate cement exhibiting rapid conversion to hydroxyapatite Type A1 Journal article
  Year 2009 Publication Materials science and engineering: part C: biomimetic materials Abbreviated Journal Mat Sci Eng C-Mater  
  Volume 29 Issue 7 Pages 2124-2132  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The rational synthesis, comprehensive characterization, and mechanical and micromechanical properties of a calcium phosphate cement are presented. Hydroxyapatite cement biomaterial was synthesized from reactive sub-micrometer-sized dicalcium phosphate dihydrate and tetracalcium phosphate via a dissolution-precipitation reaction using water as the liquid phase. As a result nanostructured, Ca-deficient and carbonated B-type hydroxyapatite is formed. The cement shows good processibility, sets in 22 ± 2 min and entirely transforms to the end product after 6 h of setting reaction, one of the highest conversion rates among previously reported for calcium phosphate cements based on dicalcium and tetracalcium phosphates. The combination of all elucidated physical-chemical traits leads to an essential bioactivity and biocompatibility of the cement, as revealed by in vitro acellular simulated body fluid and cell culture studies. The compressive strength of the produced cement biomaterial was established to be 25 ± 3 MPa. Furthermore, nanoindentation tests were performed directly on the cement to probe its local elasticity and plasticity at sub-micrometer/micrometer level. The measured elastic modulus and hardness were established to be Es = 23 ± 3.5 and H = 0.7 ± 0.2 GPa, respectively. These values are in close agreement with those reported in literature for trabecular and cortical bones, reflecting good elastic and plastic coherence between synthesized cement biomaterial and human bones.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lausanne Editor  
  Language Wos 000270159200008 Publication Date 2009-04-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0928-4931; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 4.164 Times cited 18 Open Access  
  Notes Esteem 026019 Approved Most recent IF: 4.164; 2009 IF: NA  
  Call Number UA @ lucian @ c:irua:79312 Serial 2812  
Permanent link to this record
 

 
Author Voss, A.; Wei, H.Y.; Zhang, Y.; Turner, S.; Ceccone, G.; Reithmaier, J.P.; Stengl, M.; Popov, C. pdf  doi
openurl 
  Title Strong attachment of circadian pacemaker neurons on modified ultrananocrystalline diamond surfaces Type A1 Journal article
  Year 2016 Publication Materials science and engineering: part C: biomimetic materials Abbreviated Journal Mat Sci Eng C-Mater  
  Volume 64 Issue 64 Pages 278-285  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Diamond is a promising material for a number of bio-applications, including the fabrication of platforms for attachment and investigation of neurons and of neuroprostheses, such as retinal implants. In the current work ultrananocrystalline diamond (UNCD) films were deposited by microwave plasma chemical vapor deposition, modified by UV/O-3 treatment or NH3 plasma, and comprehensively characterized with respect to their bulk and surface properties, such as crystallinity, topography, composition and chemical bonding nature. The interactions of insect circadian pacemaker neurons with UNCD surfaces with H-, O- and NH2-terminations were investigated with respect to cell density and viability. The fast and strong attachment achieved without application of adhesion proteins allowed for advantageous modification of dispersion protocols for the preparation of primary cell cultures. Centrifugation steps, which are employed for pelletizing dispersed cells to separate them from dispersing enzymes, easily damage neurons. Now centrifugation can be avoided since dispersed neurons quickly and strongly attach to the UNCD surfaces. Enzyme solutions can be easily washed off without losing many of the dispersed cells. No adverse effects on the cell viability and physiological responses were observed as revealed by calcium imaging. Furthermore, the enhanced attachment of the neurons, especially on the modified UNCD surfaces, was especially advantageous for the immunocytochemical procedures with the cell cultures. The cell losses during washing steps were significantly reduced by one order of magnitude in comparison to controls. In addition, the integration of a titanium grid structure under the UNCD films allowed for individual assignment of physiologically characterized neurons to immunocytochemically stained cells. Thus, employing UNCD surfaces free of foreign proteins improves cell culture protocols and immunocytochemistry with cultured cells. The fast and strong attachment of neurons was attributed to a favorable combination of topography, surface chemistry and wettability. (C) 2016 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lausanne Editor  
  Language Wos 000376547700033 Publication Date 2016-03-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0928-4931 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 4.164 Times cited 7 Open Access  
  Notes Approved Most recent IF: 4.164  
  Call Number UA @ lucian @ c:irua:134164 Serial 4251  
Permanent link to this record
 

 
Author Zhao, L.; Ding, L.; Soete, J.; Idrissi, H.; Kerckhofs, G.; Simar, A. pdf  url
doi  openurl
  Title Fostering crack deviation via local internal stresses in Al/NiTi composites and its correlation with fracture toughness Type A1 Journal article
  Year 2019 Publication Composites: part A: applied science and manufacturing Abbreviated Journal Compos Part A-Appl S  
  Volume 126 Issue 126 Pages 105617  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In the framework of metal matrix composites, a research gap exists regarding tailoring damage mechanisms. The present work aims at developing an Al/NiTi composite incorporating internal stresses in the vicinity of reinforcements. The composite is manufactured by friction stir processing which allows a homogenous NiTi distribution and a good Al/NiTi interface bonding. The internal stresses are introduced via shape memory effect of the embedded NiTi particles. The induced internal strain field is confirmed by digital image correlation and the corresponding stress field is evaluated by finite element simulation. It is found that the damage mechanism is modified in the presence of internal stresses. The consequent enhancement of fracture toughness arises by the fact that the internal stresses foster discrete damages shifted from the fracture ligament line. These damages release the stress concentration at the main crack tip and lead to a deviated crack path when coalescing to accommodate fracture propagation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000489350600025 Publication Date 2019-09-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-835x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 4.075 Times cited Open Access  
  Notes ; This research work has been exclusively supported by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (grant agreement no 716678). The X-ray computed,tomography facilities of the Department of Materials Engineering of the KU Leuven are financed by the Hercules Foundation. H. Idrissi is mandated by the Belgian National Fund for Scientific Research (FSR-FNRS). The authors acknowledge Professor F. Delannay from UCLouvain for fruitful discussions. ; Approved Most recent IF: 4.075  
  Call Number UA @ admin @ c:irua:163706 Serial 5387  
Permanent link to this record
 

 
Author Sun, S.R.; Wang, H.X.; Bogaerts, A. pdf  url
doi  openurl
  Title Chemistry reduction of complex CO2chemical kinetics: application to a gliding arc plasma Type A1 Journal article
  Year 2020 Publication Plasma Sources Science & Technology Abbreviated Journal Plasma Sources Sci T  
  Volume 29 Issue 2 Pages 025012  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A gliding arc (GA) plasma has great potential for CO2 conversion into value-added chemicals, because of its high energy efficiency. To improve the application, a 2D/3D fluid model is needed to investigate the CO2 conversion mechanisms in the actual discharge geometry. Therefore, the complex CO2 chemical kinetics description must be reduced due to the huge computational cost associated with 2D/3D models. This paper presents a chemistry reduction method for CO2 plasmas, based on the so-called directed relation graph method. Depending on the defined threshold values, some marginal species are identified. By means of a sensitivity analysis, we can further reduce the chemistry set by removing one by one the marginal species. Based on the socalled flux-sensitivity coupling, we obtain a reduced CO2 kinetics model, consisting of 36 or 15 species (depending on whether the 21 asymmetric mode vibrational states of CO2 are explicitly included or lumped into one group), which is applied to a GA discharge. The results are compared with those predicted with the full chemistry set, and very good agreement is reached. Moreover, the range of validity of the reduced CO2 chemistry set is checked, telling us that this reduced set is suitable for low power GA discharges. Finally, the time and spatial evolution of the CO2 plasma characteristics are presented, based on a 2D model with the reduced kinetics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000525600600001 Publication Date 2020-02-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 3.8 Times cited Open Access  
  Notes We acknowledge financial support from the Fund for Scientific Research Flanders (FWO; Grant No. G.0383.16 N). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. This work was also supported by the National Natural Science Foundation of China. (Grant Nos. 11735004, 11575019). SR Sun thanks the financial support from the National Postdoctoral Program for Innovative Talents (BX20180029). Approved Most recent IF: 3.8; 2020 IF: 3.302  
  Call Number PLASMANT @ plasmant @c:irua:167135 Serial 6338  
Permanent link to this record
 

 
Author van ‘t Veer, K.; Reniers, F.; Bogaerts, A. pdf  url
doi  openurl
  Title Zero-dimensional modeling of unpacked and packed bed dielectric barrier discharges: the role of vibrational kinetics in ammonia synthesis Type A1 Journal article
  Year 2020 Publication Plasma Sources Science & Technology Abbreviated Journal Plasma Sources Sci T  
  Volume 29 Issue 4 Pages 045020  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We present a zero-dimensional plasma kinetics model, including both surface and gas phase kinetics, to determine the role of vibrationally excited states in plasma-catalytic ammonia synthesis. We defined a new method to systematically capture the conditions of dielectric barrier discharges (DBDs), including those found in packed bed DBDs. We included the spatial and temporal nature of such discharges by special consideration of the number of micro-discharges in the model. We introduce a parameter that assigns only a part of the plasma power to the microdischarges, to scale the model conditions from filamentary to uniform plasma. Because of the spatial and temporal behaviour of the micro-discharges, not all micro-discharges occurring in the plasma reactor during a certain gas residence time are affecting the molecules. The fraction of power considered in the model ranges from 0.005 %, for filamentary plasma, to 100 %, for uniform plasma. If vibrational excitation is included in the plasma chemistry, these different conditions, however, yield an ammonia density that is only varying within one order of magnitude. At only 0.05 % of the power put into the uniform plasma component, a model neglecting vibrational excitation clearly does not result in adequate amounts of ammonia. Thus, our new model, which accounts for the concept in which not all the power is deposited by the micro-discharges, but some part may also be distributed in between them, suggests that vibrational kinetic processes are really important in (packed bed) DBDs. Indeed, vibrational excitation takes place in both the uniform plasma between the micro-discharges and in the strong micro-discharges, and is responsible for an increased N2 dissociation rate. This is shown here for plasma-catalytic ammonia synthesis, but might also be valid for other gas conversion applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000570241500001 Publication Date 2020-04-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 3.8 Times cited Open Access  
  Notes This research was supported by the Excellence of Science FWO-FNRS project (FWO grant ID GoF9618n, EOS ID 30505023). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. The authors would also like to thank Dr. Fatme Jardali for the discussions on plasma kinetic modelling and Dr. Jungmi Hong and Dr. Anthony B. Murphy for their aid in the calculation of the diffusion coefficients. Approved Most recent IF: 3.8; 2020 IF: 3.302  
  Call Number PLASMANT @ plasmant @c:irua:168097 Serial 6359  
Permanent link to this record
 

 
Author Zhang, H.; Zhang, H.; Trenchev, G.; Li, X.; Wu, Y.; Bogaerts, A. pdf  url
doi  openurl
  Title Multi-dimensional modelling of a magnetically stabilized gliding arc plasma in argon and CO2 Type A1 Journal article
  Year 2020 Publication Plasma Sources Science & Technology Abbreviated Journal Plasma Sources Sci T  
  Volume 29 Issue 4 Pages 045019  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract This study focuses on a magnetically stabilized gliding arc (MGA) plasma. Two fully coupled flow-plasma models (in 3D and 2D) are presented. The 3D model is applied to compare the arc dynamics of the MGA with a traditional gas-driven gliding arc. The 2D model is used for a detailed parametric study on the effect of the external magnetic field. The results show that the relative velocity between the plasma and feed gas is generated due to the Lorentz force, which can increase the plasma-treated gas fraction. The magnetic field also helps to decrease the gas temperature by enhancing heat transfer and to increase the electron number density. This work shows the potential of an external magnetic field to control the gliding arc behavior, for enhanced gas conversion at low gas flow rates.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000570241800001 Publication Date 2020-04-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 3.8 Times cited Open Access  
  Notes Fonds Wetenschappelijk Onderzoek, G.0383.16N ; National Natural Science Foundation of China, 51706204 51707144 ; State Key Laboratory of Electrical Insulation and Power Equipment, EIPE19302 ; The authors acknowledge financial support from the Fund for Scientific Research—Flanders (FWO; Grant G.0383.16 N), National Natural Science Foundation of China under Grant Nos. 51706204, 51707144, and State Key Laboratory of Electrical Insulation and Power Equipment (EIPE19302). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (Department EWI), and Universiteit Antwerpen. Finally, Hantian Zhang acknowledges financial support from the China Scholarship Council. Approved Most recent IF: 3.8; 2020 IF: 3.302  
  Call Number PLASMANT @ plasmant @c:irua:169218 Serial 6360  
Permanent link to this record
 

 
Author Verheyen, C.; Silva, T.; Guerra, V.; Bogaerts, A. pdf  url
doi  openurl
  Title The effect of H2O on the vibrational populations of CO2in a CO2/H2O microwave plasma: a kinetic modelling investigation Type A1 Journal article
  Year 2020 Publication Plasma Sources Science & Technology Abbreviated Journal Plasma Sources Sci T  
  Volume 29 Issue 9 Pages 095009  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma has been studied for several years to convert CO2 into value-added products. If CO2 could be converted in the presence of H2O as a cheap H-source for making syngas and oxygenates, it would mimic natural photosynthesis. However, CO2/H2O plasmas have not yet been extensively studied, not by experiments, and certainly not computationally. Therefore, we present here a kinetic modelling study to obtain a greater understanding of the vibrational kinetics of a CO2/H2O microwave plasma. For this purpose, we first created an electron impact cross section set for H2O, using a swarm-derived method. We added the new cross section set and CO2/H2O-related chemistry to a pure CO2 model. While it was expected that H2O addition mainly causes quenching of the CO2 asymmetric mode vibrational levels due to the additional CO2/H2O vibrational-translational relaxation, our model shows that the modifications in the vibrational kinetics are mainly induced by the strong electron dissociative attachment to H2O molecules, causing a reduction in electron density, and the corresponding changes in the input of energy into the CO2 vibrational levels by electron impact processes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000570601300001 Publication Date 2020-09-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 3.8 Times cited Open Access  
  Notes Fonds Wetenschappelijk Onderzoek, 1184820N ; Fundação para a Ciência e a Tecnologia, under projects UIDB/50010/2020 and ; This research was supported by FWO–PhD fellowshipaspirant, Grant 1184820N. VG and TS were partially supported by the Portuguese FCT, under projects UIDB/50010/2020 and UIDP/50010/2020 Approved Most recent IF: 3.8; 2020 IF: 3.302  
  Call Number PLASMANT @ plasmant @c:irua:172011 Serial 6433  
Permanent link to this record
 

 
Author Zhang, L.; Heijkers, S.; Wang, W.; Martini, L.M.; Tosi, P.; Yang, D.; Fang, Z.; Bogaerts, A. pdf  url
doi  openurl
  Title Dry reforming of methane in a nanosecond repetitively pulsed discharge: chemical kinetics modeling Type A1 Journal article
  Year 2022 Publication Plasma Sources Science & Technology Abbreviated Journal Plasma Sources Sci T  
  Volume 31 Issue 5 Pages 055014  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Nanosecond pulsed discharge plasma shows a high degree of non-equilibrium, and exhibits relatively high conversions in the dry reforming of methane. To further improve the application, a good insight of the underlying mechanisms is desired. We developed a chemical kinetics model to explore the underlying plasma chemistry in nanosecond pulsed discharge. We compared the calculated conversions and product selectivities with experimental results, and found reasonable agreement in a wide range of specific energy input. Hence, the chemical kinetics model is able to provide insight in the underlying plasma chemistry. The modeling results predict that the most important dissociation reaction of CO<sub>2</sub>and CH<sub>4</sub>is electron impact dissociation. C<sub>2</sub>H<sub>2</sub>is the most abundant hydrocarbon product, and it is mainly formed upon reaction of two CH<sub>2</sub>radicals. Furthermore, the vibrational excitation levels of CO<sub>2</sub>contribute for 85% to the total dissociation of CO<sub>2</sub>.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000797660000001 Publication Date 2022-05-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0963-0252 ISBN Additional Links UA library record; WoS full record  
  Impact Factor (down) 3.8 Times cited Open Access OpenAccess  
  Notes China Scholarship Council; National Natural Science Foundation of China, 11965018 ; This work is supported by the National Natural Science Foundation of China (Grant Nos. 52077026, 11965018), L Zhang was also supported by the China Scholarship Council (CSC). Data availability statement The data that support the findings of this study are available upon reasonable request from the authors. Approved Most recent IF: 3.8  
  Call Number PLASMANT @ plasmant @c:irua:188537 Serial 7069  
Permanent link to this record
 

 
Author Bogaerts, A.; Neyts, E.C.; Guaitella, O.; Murphy, A.B. pdf  url
doi  openurl
  Title Foundations of plasma catalysis for environmental applications Type A1 Journal article
  Year 2022 Publication Plasma Sources Science & Technology Abbreviated Journal Plasma Sources Sci T  
  Volume Issue Pages  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma catalysis is gaining increasing interest for various applications, but the underlying mechanisms are still far from understood. Hence, more fundamental research is needed to understand these mechanisms. This can be obtained by both modelling and experiments. This foundations paper describes the fundamental insights in plasma catalysis, as well as efforts to gain more insights by modelling and experiments. Furthermore, it discusses the state-of-the-art of the major plasma catalysis applications, as well as successes and challenges of technology transfer of these applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000804396200001 Publication Date 2022-03-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0963-0252 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 3.8 Times cited Open Access OpenAccess  
  Notes H2020 Marie Skłodowska-Curie Actions, 823745 ; H2020 European Research Council, 810182 ; We acknowldege financial support from the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation programme (Grant Agreement No. 810182 – SCOPE ERC Synergy project) and the European Union’s Horizon 2020 Research and Innovation programme under the Marie Sklodowska-Curie Grant Agreement No. 813393 (PIONEER). Approved Most recent IF: 3.8  
  Call Number PLASMANT @ plasmant @c:irua:188539 Serial 7070  
Permanent link to this record
 

 
Author Bissonnette-Dulude, J.; Heirman, P.; Coulombe, S.; Bogaerts, A.; Gervais, T.; Reuter, S. url  doi
openurl 
  Title Coupling the COST reference plasma jet to a microfluidic device: a computational study Type A1 Journal article
  Year 2024 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci. Technol.  
  Volume 33 Issue 1 Pages 015001  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The use of microfluidic devices in the field of plasma-liquid interaction can unlock unique possibilities to investigate the effects of plasma-generated reactive species for environmental and biomedical applications. So far, very little simulation work has been performed on microfluidic devices in contact with a plasma source. We report on the modelling and computational simulation of physical and chemical processes taking place in a novel plasma-microfluidic platform. The main production and transport pathways of reactive species both in plasma and liquid are modelled by a novel modelling approach that combines 0D chemical kinetics and 2D transport mechanisms. This combined approach, applicable to systems where the transport of chemical species occurs in unidirectional flows at high Péclet numbers, decreases calculation times considerably compared to regular 2D simulations. It takes advantage of the low computational time of the 0D reaction models while providing spatial information through multiple plug-flow simulations to yield a quasi-2D model. The gas and liquid flow profiles are simulated entirely in 2D, together with the chemical reactions and transport of key chemical species. The model correctly predicts increased transport of hydrogen peroxide into the liquid when the microfluidic opening is placed inside the plasma effluent region, as opposed to inside the plasma region itself. Furthermore, the modelled hydrogen peroxide production and transport in the microfluidic liquid differs by less than 50% compared with experimental results. To explain this discrepancy, the limits of the 0D–2D combined approach are discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001136607100001 Publication Date 2024-01-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0963-0252 ISBN Additional Links UA library record; WoS full record  
  Impact Factor (down) 3.8 Times cited Open Access Not_Open_Access  
  Notes Natural Sciences and Engineering Research Council of Canada, RGPIN-06820 ; FWO, 1100421N ; McGill University, the TransMedTech Institute; Approved Most recent IF: 3.8; 2024 IF: 3.302  
  Call Number PLASMANT @ plasmant @c:irua:202783 Serial 8990  
Permanent link to this record
 

 
Author Biondo, O.; Fromentin, C.; Silva, T.; Guerra, V.; van Rooij, G.; Bogaerts, A. pdf  url
doi  openurl
  Title Insights into the limitations to vibrational excitation of CO2: validation of a kinetic model with pulsed glow discharge experiments Type A1 Journal article
  Year 2022 Publication Plasma Sources Science & Technology Abbreviated Journal Plasma Sources Sci T  
  Volume 31 Issue 7 Pages 074003  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Vibrational excitation represents an efficient channel to drive the dissociation of CO<sub>2</sub>in a non-thermal plasma. Its viability is investigated in low-pressure pulsed discharges, with the intention of selectively exciting the asymmetric stretching mode, leading to stepwise excitation up to the dissociation limit of the molecule. Gas heating is crucial for the attainability of this process, since the efficiency of vibration–translation (V–T) relaxation strongly depends on temperature, creating a feedback mechanism that can ultimately thermalize the discharge. Indeed, recent experiments demonstrated that the timeframe of V–T non-equilibrium is limited to a few milliseconds at ca. 6 mbar, and shrinks to the<italic>μ</italic>s-scale at 100 mbar. With the aim of backtracking the origin of gas heating in pure CO<sub>2</sub>plasma, we perform a kinetic study to describe the energy transfers under typical non-thermal plasma conditions. The validation of our kinetic scheme with pulsed glow discharge experiments enables to depict the gas heating dynamics. In particular, we pinpoint the role of vibration–vibration–translation relaxation in redistributing the energy from asymmetric to symmetric levels of CO<sub>2</sub>, and the importance of collisional quenching of CO<sub>2</sub>electronic states in triggering the heating feedback mechanism in the sub-millisecond scale. This latter finding represents a novelty for the modelling of low-pressure pulsed discharges and we suggest that more attention should be paid to it in future studies. Additionally, O atoms convert vibrational energy into heat, speeding up the feedback loop. The efficiency of these heating pathways, even at relatively low gas temperature and pressure, underpins the lifetime of V–T non-equilibrium and suggests a redefinition of the optimal conditions to exploit the ‘ladder-climbing’ mechanism in CO<sub>2</sub>discharges.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000839466500001 Publication Date 2022-07-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0963-0252 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 3.8 Times cited Open Access OpenAccess  
  Notes Fundação para a Ciência e a Tecnologia, PLA/0076/2021 ; H2020 Marie Skłodowska-Curie Actions, 813393 ; This research was supported by the European Union’s Horizon 2020 Research and Innovation programme under the Marie Sklodowska-Curie Grant Agreement No. 813393 (PIONEER). V Guerra and T Silva were partially funded by the Portuguese ‘FCT-Fundação para a Ciência e a Tecnologia’, under Projects UIDB/50010/2020, UIDP/50010/2020, PTDC/FISPLA/1616/2021 and EXPL/FIS-PLA/0076/2021. The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. Approved Most recent IF: 3.8  
  Call Number PLASMANT @ plasmant @c:irua:190008 Serial 7106  
Permanent link to this record
 

 
Author Tennyson, J.; Mohr, S.; Hanicinec, M.; Dzarasova, A.; Smith, C.; Waddington, S.; Liu, B.; Alves, L.L.; Bartschat, K.; Bogaerts, A.; Engelmann, S.U.; Gans, T.; Gibson, A.R.; Hamaguchi, S.; Hamilton, K.R.; Hill, C.; O’Connell, D.; Rauf, S.; van ’t Veer, K.; Zatsarinny, O. url  doi
openurl 
  Title The 2021 release of the Quantemol database (QDB) of plasma chemistries and reactions Type A1 Journal article
  Year 2022 Publication Plasma Sources Science & Technology Abbreviated Journal Plasma Sources Sci T  
  Volume 31 Issue 9 Pages 095020  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The Quantemol database (QDB) provides cross sections and rates of processes important for plasma models; heavy particle collisions (chemical reactions) and electron collision processes are considered. The current version of QDB has data on 28 917 processes between 2485 distinct species plus data for surface processes. These data are available via a web interface or can be delivered directly to plasma models using an application program interface; data are available in formats suitable for direct input into a variety of popular plasma modeling codes including HPEM, COMSOL, ChemKIN, CFD-ACE+, and VisGlow. QDB provides ready assembled plasma chemistries plus the ability to build bespoke chemistries. The database also provides a Boltzmann solver for electron dynamics and a zero-dimensional model. Thesedevelopments, use cases involving O<sub>2</sub>, Ar/NF<sub>3</sub>, Ar/NF<sub>3</sub>/O<sub>2</sub>, and He/H<sub>2</sub>O/O<sub>2</sub>chemistries, and plans for the future are presented.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000895762200001 Publication Date 2022-09-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0963-0252 ISBN Additional Links UA library record; WoS full record  
  Impact Factor (down) 3.8 Times cited Open Access OpenAccess  
  Notes Engineering and Physical Sciences Research Council, EP/N509577/1 ; Fundação para a Ciência e a Tecnologia, UIDB/50010/2020 ; Science and Technology Facilities Council, ST/K004069/1 ; National Science Foundation, OAC-1834740 ; Approved Most recent IF: 3.8  
  Call Number PLASMANT @ plasmant @c:irua:192845 Serial 7245  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: