|
Record |
Links |
|
Author |
Zhang, L.; Heijkers, S.; Wang, W.; Martini, L.M.; Tosi, P.; Yang, D.; Fang, Z.; Bogaerts, A. |
|
|
Title |
Dry reforming of methane in a nanosecond repetitively pulsed discharge: chemical kinetics modeling |
Type |
A1 Journal article |
|
Year |
2022 |
Publication |
Plasma Sources Science & Technology |
Abbreviated Journal |
Plasma Sources Sci T |
|
|
Volume |
31 |
Issue |
5 |
Pages |
055014 |
|
|
Keywords |
A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT) |
|
|
Abstract |
Nanosecond pulsed discharge plasma shows a high degree of non-equilibrium, and exhibits relatively high conversions in the dry reforming of methane. To further improve the application, a good insight of the underlying mechanisms is desired. We developed a chemical kinetics model to explore the underlying plasma chemistry in nanosecond pulsed discharge. We compared the calculated conversions and product selectivities with experimental results, and found reasonable agreement in a wide range of specific energy input. Hence, the chemical kinetics model is able to provide insight in the underlying plasma chemistry. The modeling results predict that the most important dissociation reaction of CO<sub>2</sub>and CH<sub>4</sub>is electron impact dissociation. C<sub>2</sub>H<sub>2</sub>is the most abundant hydrocarbon product, and it is mainly formed upon reaction of two CH<sub>2</sub>radicals. Furthermore, the vibrational excitation levels of CO<sub>2</sub>contribute for 85% to the total dissociation of CO<sub>2</sub>. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000797660000001 |
Publication Date |
2022-05-01 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0963-0252 |
ISBN |
|
Additional Links |
UA library record; WoS full record |
|
|
Impact Factor |
3.8 |
Times cited |
|
Open Access |
OpenAccess |
|
|
Notes |
China Scholarship Council; National Natural Science Foundation of China, 11965018 ; This work is supported by the National Natural Science Foundation of China (Grant Nos. 52077026, 11965018), L Zhang was also supported by the China Scholarship Council (CSC). Data availability statement The data that support the findings of this study are available upon reasonable request from the authors. |
Approved |
Most recent IF: 3.8 |
|
|
Call Number |
PLASMANT @ plasmant @c:irua:188537 |
Serial |
7069 |
|
Permanent link to this record |