|
Record |
Links |
|
Author |
Bissonnette-Dulude, J.; Heirman, P.; Coulombe, S.; Bogaerts, A.; Gervais, T.; Reuter, S. |
|
|
Title |
Coupling the COST reference plasma jet to a microfluidic device: a computational study |
Type |
A1 Journal article |
|
Year |
2024 |
Publication |
Plasma sources science and technology |
Abbreviated Journal |
Plasma Sources Sci. Technol. |
|
|
Volume |
33 |
Issue |
1 |
Pages |
015001 |
|
|
Keywords |
A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT) |
|
|
Abstract |
The use of microfluidic devices in the field of plasma-liquid interaction can unlock unique possibilities to investigate the effects of plasma-generated reactive species for environmental and biomedical applications. So far, very little simulation work has been performed on microfluidic devices in contact with a plasma source. We report on the modelling and computational simulation of physical and chemical processes taking place in a novel plasma-microfluidic platform. The main production and transport pathways of reactive species both in plasma and liquid are modelled by a novel modelling approach that combines 0D chemical kinetics and 2D transport mechanisms. This combined approach, applicable to systems where the transport of chemical species occurs in unidirectional flows at high Péclet numbers, decreases calculation times considerably compared to regular 2D simulations. It takes advantage of the low computational time of the 0D reaction models while providing spatial information through multiple plug-flow simulations to yield a quasi-2D model. The gas and liquid flow profiles are simulated entirely in 2D, together with the chemical reactions and transport of key chemical species. The model correctly predicts increased transport of hydrogen peroxide into the liquid when the microfluidic opening is placed inside the plasma effluent region, as opposed to inside the plasma region itself. Furthermore, the modelled hydrogen peroxide production and transport in the microfluidic liquid differs by less than 50% compared with experimental results. To explain this discrepancy, the limits of the 0D–2D combined approach are discussed. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
001136607100001 |
Publication Date |
2024-01-01 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0963-0252 |
ISBN |
|
Additional Links |
UA library record; WoS full record |
|
|
Impact Factor |
3.8 |
Times cited |
|
Open Access |
Not_Open_Access |
|
|
Notes |
Natural Sciences and Engineering Research Council of Canada, RGPIN-06820 ; FWO, 1100421N ; McGill University, the TransMedTech Institute; |
Approved |
Most recent IF: 3.8; 2024 IF: 3.302 |
|
|
Call Number |
PLASMANT @ plasmant @c:irua:202783 |
Serial |
8990 |
|
Permanent link to this record |