|
Record |
Links |
|
Author |
Zhao, H.; Li, C.-F.; Hu, Z.-Y.; Liu, J.; Li, Y.; Hu, J.; Van Tendeloo, G.; Chen, L.-H.; Su, B.-L. |
|
|
Title |
Size effect of bifunctional gold in hierarchical titanium oxide-gold-cadmium sulfide with slow photon effect for unprecedented visible-light hydrogen production |
Type |
A1 Journal article |
|
Year |
2021 |
Publication |
Journal Of Colloid And Interface Science |
Abbreviated Journal |
J Colloid Interf Sci |
|
|
Volume |
604 |
Issue |
|
Pages |
131-139 |
|
|
Keywords |
A1 Journal article; Electron microscopy for materials research (EMAT) |
|
|
Abstract |
Gold nanoparticles (Au NPs) with surface plasmonic resonance (SPR) effect and excellent internal electron transfer ability have widely been combined with semiconductors for photocatalysis. However, the in-depth effects of Au NPs in multicomponent photocatalysts have not been completely understood. Herein, ternary titanium oxide-gold-cadmium sulfide (TiO2-Au-CdS, TAC) photocatalysts, based on hierarchical TiO2 inverse opal photonic crystal structure with different Au NPs sizes have been designed to reveal the SPR effect and internal electron transfer of Au NPs in the presence of slow photon effect. It appears that the SPR effect and internal electron transfer ability of Au NPs, depending on their sizes, play a synergistic effect on the photocatalytic enhancement. The ternary TAC-10 photocatalyst with – 10 nm Au NPs demonstrates an unprecedented hydrogen evolution rate of 47.6 mmolh-1g 1 under visible-light, demonstrating- 48% enhancement comparing to the sample without slow photon effect. In particular, a 9.83% apparent quantum yield under 450 nm monochromatic light is achieved for TAC-10. A model is proposed and finite-difference time-domain (FDTD) simulations reveal the size influence of Au NPs in ternary TAC photocatalysts. This work suggests that the rational design of bifunctional Au NPs coupling with slow photon effect could largely promote hydrogen production from visible-light driven water splitting. (c) 2021 Elsevier Inc. All rights reserved. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000704428600004 |
Publication Date |
2021-07-01 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0021-9797 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
4.233 |
Times cited |
|
Open Access |
Not_Open_Access |
|
|
Notes |
|
Approved |
Most recent IF: 4.233 |
|
|
Call Number |
UA @ admin @ c:irua:182531 |
Serial |
6886 |
|
Permanent link to this record |