toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Bollen, E.; Pagan, B.R.; Kuijpers, B.; Van Hoey, S.; Desmet, N.; Hendrix, R.; Dams, J.; Seuntjens, P. url  doi
openurl 
  Title A database system for querying of river networks : facilitating monitoring and prediction applications Type A1 Journal article
  Year (up) 2021 Publication Water Science And Technology-Water Supply Abbreviated Journal Water Sci Tech-W Sup  
  Volume Issue Pages  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The increasing availability of real-time in situ measurements and remote sensing observations have the potential to contribute to the optimization of water resources management. Global challenges such as climate change, intensive agriculture and urbanization put a high pressure on our water resources. Due to recent innovations in measuring both water quantity and quality, river systems can now be monitored in real time at an unprecedented spatial and temporal scale. To interpret the sensor measurements and remote sensing observations additional data for example on: the location of the measurement, upstream and downstream catchment characteristics, horizontal ellipsis are required. In this paper, we present a data management system to support flow-path related functionality for decision making and prediction modelling. Adding meta data sets and facilitating (near) real-time processing of sensor data questions are key concepts for the systems. The potential of the database framework for hydrological applications is demonstrated using different applications for the river system of Flanders. In one, the database framework is used to simulate the daily discharge for each segment within a catchment using a simple data-driven approach. The presented system is useful for numerous applications including pollution tracking, alerting and inter-sensor validation in river systems, or related networks.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000729755100001 Publication Date 2021-12-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1606-9749 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 0.573 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 0.573  
  Call Number UA @ admin @ c:irua:184814 Serial 7387  
Permanent link to this record
 

 
Author De Paepe, J.; Clauwaert, P.; Gritti, M.C.; Ganigue, R.; Sas, B.; Vlaeminck, S.E.; Rabaey, K. pdf  url
doi  openurl
  Title Electrochemical in situ pH control enables chemical-free full urine nitrification with concomitant nitrate extraction Type A1 Journal article
  Year (up) 2021 Publication Environmental Science & Technology Abbreviated Journal Environ Sci Technol  
  Volume 55 Issue 12 Pages 8287-8298  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Urine is a valuable resource for nutrient recovery. Stabilization is, however, recommended to prevent urea hydrolysis and the associated risk for ammonia volatilization, uncontrolled precipitation, and malodor. This can be achieved by alkalinization and subsequent biological conversion of urea and ammonia into nitrate (nitrification) and organics into CO2. Yet, without pH control, the extent of nitrification is limited as a result of insufficient alkalinity. This study explored the feasibility of an integrated electrochemical cell to obtain on-demand hydroxide production through water reduction at the cathode, compensating for the acidification caused by nitritation, thereby enabling full nitrification. To deal with the inherent variability of the urine influent composition and bioprocess, the electrochemical cell was steered via a controller, modulating the current based on the pH in the bioreactor. This provided a reliable and innovative alternative to base addition, enabling full nitrification while avoiding the use of chemicals, the logistics associated with base storage and dosing, and the associated increase in salinity. Moreover, the electrochemical cell could be used as an in situ extraction and concentration technology, yielding an acidic concentrated nitrate-rich stream. The make-up of the end product could be tailored by tweaking the process configuration, offering versatility for applications on Earth and in space.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000663939900052 Publication Date 2021-06-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-936x; 1520-5851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.198 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 6.198  
  Call Number UA @ admin @ c:irua:179779 Serial 7862  
Permanent link to this record
 

 
Author Chapman, D.; Gielis, J. doi  openurl
  Title Gielis transformations for the audiovisual geometry database Type A1 Journal article
  Year (up) 2021 Publication Symmetry : culture and science Abbreviated Journal  
  Volume 32 Issue 2 Pages 177-180  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract This publication introduces the audiovisual geometry database with Gielis transformations as initial records for a prototype of the database. A concise overview is given of the rationale behind the database and studying wave phenomena with Gielis transformations. First results on a form of timbral polyphony observed in Gielis curves and future work are briefly discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2021-07-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0865-4824 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:180965 Serial 8004  
Permanent link to this record
 

 
Author Castanheiro, A.; Wuyts, K.; Hofman, J.; Nuyts, G.; De Wael, K.; Samson, R. pdf  url
doi  openurl
  Title Morphological and elemental characterization of leaf-deposited particulate matter from different source types : a microscopic investigation Type A1 Journal article
  Year (up) 2021 Publication Environmental Science And Pollution Research Abbreviated Journal Environ Sci Pollut R  
  Volume 28 Issue 20 Pages 25716-25732  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Particulate matter (PM) deposition on urban green enables the collection of particulate pollution from a diversity of contexts, and insight into the physico-chemical profiles of PM is key for identifying main polluting sources. This study reports on the morphological and elemental characterization of PM2-10 deposited on ivy leaves from five different environments (forest, rural, roadside, train, industry) in the region of Antwerp, Belgium. Ca. 40,000 leaf-deposited particles were thoroughly investigated by particle-based analysis using scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM/EDX) and their physico-chemical characteristics were explored for PM source apportionment purposes. The size distribution of all deposited particles was biased towards small-sized PM, with 32% of the particles smaller than 2.5 mu m (PM2.5) and median diameters of 2.80-3.09 mu m. The source type influenced both the particles' size and morphology (aspect ratio and shape), with roadside particles being overall the smallest in size and the most spherical. While forest and rural elemental profiles were associated with natural PM, the industry particles revealed the highest anthropogenic metal input. PM2-10 profiles for roadside and train sites were rather comparable and only distinguishable when evaluating the fine (2-2.5 mu m) and coarse (2.5-10 mu m) PM fractions separately, which enabled the identification of a larger contribution of combustion-derived particles (small, circular, Fe-enriched) at the roadside compared to the train. Random forest prediction model classified the source type correctly for 61-85% of the leaf-deposited PM. The still modest classification accuracy denotes the influence of regional background PM and demands for additional fingerprinting techniques to facilitate source apportionment. Nonetheless, the obtained results demonstrate the utility of leaf particle-based analysis to fingerprint and pinpoint source-specific PM, particularly when considering both the composition and size of leaf-deposited particles.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000609067300006 Publication Date 2021-01-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0944-1344; 1614-7499 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.741 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 2.741  
  Call Number UA @ admin @ c:irua:176082 Serial 8282  
Permanent link to this record
 

 
Author Alloul, A.; Cerruti, M.; Adamczyk, D.; Weissbrodt, D.G.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Operational strategies to selectively produce purple bacteria for microbial protein in raceway reactors Type A1 Journal article
  Year (up) 2021 Publication Environmental Science & Technology Abbreviated Journal Environ Sci Technol  
  Volume 55 Issue 12 Pages 8278-8286  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Purple non-sulfur bacteria (PNSB) show potential for microbial protein production on wastewater as animal feed. They offer good selectivity (i.e., low microbial diversity and high abundance of one species) when grown anaerobically in the light. However, the cost of closed anaerobic photobioreactors is prohibitive for protein production. Although open raceway reactors are cheaper, their feasibility to selectively grow PNSB is thus far unexplored. This study developed operational strategies to boost PNSB abundance in the biomass of a raceway reactor fed with volatile fatty acids. For a flask reactor run at a 2 day sludge retention time (SRT), matching the chemical oxygen demand (COD) loading rate to the removal rate in the light period prevented substrate availability during the dark period and increased the PNSB abundance from 50-67 to 88-94%. A raceway reactor run at a 2 day SRT showed an increased PNSB abundance from 14 to 56% when oxygen supply was reduced (no stirring at night). The best performance was achieved at the highest surface-to-volume ratio (10 m(2) m(-3) increased light availability) showing productivities up to 0.2 g protein L-1 day(-1) and a PNSB abundance of 78%. This study pioneered in PNSB-based microbial protein production in raceway reactors, yielding high selectivity while avoiding the combined availability of oxygen, COD, and darkness.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000663939900051 Publication Date 2021-06-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-936x; 1520-5851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.198 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 6.198  
  Call Number UA @ admin @ c:irua:179768 Serial 8334  
Permanent link to this record
 

 
Author Gielis, J. pdf  url
doi  openurl
  Title Phi-bonacci in Ancient Greece Type A1 Journal article
  Year (up) 2021 Publication Symmetry : culture and science Abbreviated Journal  
  Volume 32 Issue 1 Pages 25-40  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Fibonacci numbers are a very popular subject in mathematics, culture and science. A major open question is why the ancient Greeks overlooked this series, while they were very familiar with the golden mean and division in extreme and mean ratio. Furthermore, they could compute the square root of five to a high degree of precision using Theon 's ladder. This fact is based on tables built with side and diagonal numbers, and it is a simple and incredibly efficient method to compute roots of integers, though it is little known even now among most of the experts. The biologist D 'Arcy Wentworth Thompson showed that the same method could be used to generate the Fibonacci series using a simple shift in the computation of the tables. He argues, quite convincingly, that the ancient Greeks could not have overlooked this. Actually, the same method can be used to generate all possible regular phyllotaxis patterns.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000643822700002 Publication Date 2021-03-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0865-4824 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:178322 Serial 8376  
Permanent link to this record
 

 
Author Van Tendeloo, M.; Bundervoet, B.; Carlier, N.; Van Beeck, W.; Mollen, H.; Lebeer, S.; Colsen, J.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Piloting carbon-lean nitrogen removal for energy-autonomous sewage treatment Type A1 Journal article
  Year (up) 2021 Publication Environmental Science-Water Research & Technology Abbreviated Journal Environ Sci-Wat Res  
  Volume 7 Issue 12 Pages 2268-2281  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Energy-autonomous sewage treatment can be achieved if nitrogen (N) removal does not rely on organic carbon (∼chemical oxygen demand, COD), so that a maximum of the COD can be redirected to energy recovery. Shortcut N removal technologies such as partial nitritation/anammox and nitritation/denitritation are therefore essential, enabling carbon- and energy-lean nitrogen removal. In this study, a novel three-reactor pilot design was tested and consisted of a denitrification, an intermittent aeration, and an anammox tank. A vibrating sieve was added for differential sludge retention time (SRT) control. The 13 m3 pilot was operated on pre-treated sewage (A-stage effluent) at 12–24 °C. Selective suppression of unwanted nitrite-oxidizing bacteria over aerobic ammonium-oxidizing bacteria was achieved with strict floccular SRT management combined with innovative aeration control, resulting in a minimal nitrate production ratio of 17 ± 10%. Additionally, anoxic ammonium-oxidizing bacteria (AnAOB) activity could be maintained in the reactor for at least 150 days because of long granular SRT management and the anammox tank. Consequently, the COD/N removal ratio of 2.3 ± 0.7 demonstrated shortcut N removal almost three times lower than the currently applied nitrification/denitrification technology. The effluent total N concentrations of 17 ± 3 mg TN per L (at 21 ± 1 °C) and 17 ± 6 mg TN per L (at 15 ± 1 °C) were however too high for application at the sewage treatment plant Nieuwveer (Breda, The Netherlands). Corresponding N removal efficiencies were 52 ± 12% and 37 ± 21%, respectively. Further development should focus on redirecting more nitrite to AnAOB in the B-stage, exploring effluent-polishing options, or cycling nitrate for increased A-stage denitrification.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000714159900001 Publication Date 2021-10-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2053-1400 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 2.817 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 2.817  
  Call Number UA @ admin @ c:irua:183347 Serial 8383  
Permanent link to this record
 

 
Author Al-Emam, E.; Motawea, A.G.; Caen, J.; Janssens, K. url  doi
openurl 
  Title Soot removal from ancient Egyptian complex painted surfaces using a double network gel : empirical tests on the ceiling of the sanctuary of Osiris in the temple of Seti I-Abydos Type A1 Journal article
  Year (up) 2021 Publication Heritage science Abbreviated Journal  
  Volume 9 Issue 1 Pages 1-10  
  Keywords A1 Journal article; Art; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Cultural Heritage Sciences (ARCHES)  
  Abstract In this study, we evaluated the ease of removal of soot layers from ancient wall paintings by employing double network gels as a controllable and safe cleaning method. The ceiling of the temple of Seti I (Abydos, Egypt) is covered with thick layers of soot; this is especially the case in the sanctuary of Osiris. These layers may have been accumulated during the occupation of the temple by Christians, fleeing the Romans in the first centuries A.D. Soot particulates are one of the most common deposits to be removed during conservation-restoration activities of ancient Egyptian wall paintings. They usually mask the painted reliefs and reduce the permeability of the painted surface. A Polyvinyl alcohol-borax/agarose (PVA-B/AG) double network gel was selected for this task since its properties were expected to be compatible with the cleaning treatment requirements. The gel is characterized by its flexibility, permitting to take the shape of the reliefs, while also having self-healing properties, featuring shape stability and an appropriate capacity to retain liquid. The gel was loaded with several cleaning reagents that proved to be effective for soot removal. Soot removal tests were conducted with these gel composites. The cleaned surfaces were evaluated with the naked eye, a digital microscope, and color measurements in order to select the best gel composite. The gel composite, loaded with a solution of 5% ammonia, 0.3% ammonium carbonate, and 0.3% EDTA yielded the most satisfactory results and allowed to safely remove a crust of thick soot layers from the surface. Thus, during the final phase of the study, it was used successfully to clean a larger area of the ceiling.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000604977300001 Publication Date 2021-01-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7445 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:174948 Serial 8557  
Permanent link to this record
 

 
Author Muys, M.; Phukan, R.; Brader, G.; Samad, A.; Moretti, M.; Haiden, B.; Pluchon, S.; Roest, K.; Vlaeminck, S.E.; Spiller, M. url  doi
openurl 
  Title A systematic comparison of commercially produced struvite : quantities, qualities and soil-maize phosphorus availability Type A1 Journal article
  Year (up) 2021 Publication Science Of The Total Environment Abbreviated Journal Sci Total Environ  
  Volume 756 Issue Pages 143726-12  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Engineering Management (ENM)  
  Abstract Production of struvite (MgNH4PO4·6H2O) from waste streams is increasingly implemented to recover phosphorus (P), which is listed as a critical raw material in the European Union (EU). To facilitate EU-wide trade of P-containing secondary raw materials such as struvite, the EU issued a revised fertilizer regulation in 2019. A comprehensive overview of the supply of struvite and its quality is presently missing. This study aimed: i) to determine the current EU struvite production volumes, ii) to evaluate all legislated physicochemical characteristics and pathogen content of European struvite against newly set regulatory limits, and iii) to compare not-regulated struvite characteristics. It is estimated that in 2020, between 990 and 1250 ton P are recovered as struvite in the EU. Struvite from 24 European production plants, accounting for 30% of the 80 struvite installations worldwide was sampled. Three samples failed the physicochemical legal limits; one had a P content of <7% and three exceeded the organic carbon content of 3% dry weight (DW). Mineralogical analysis revealed that six samples had a struvite content of 80–90% DW, and 13 samples a content of >90% DW. All samples showed a heavy metal content below the legal limits. Microbiological analyses indicated that struvite may exceed certain legal limits. Differences in morphology and particle size distribution were observed for struvite sourced from digestate (rod shaped; transparent; 82 mass% < 1 mm), dewatering liquor (spherical; opaque; 65 mass% 1–2 mm) and effluent from upflow anaerobic sludge blanket reactor processing potato wastewater (spherical; opaque; 51 mass% < 1 mm and 34 mass% > 2 mm). A uniform soil-plant P-availability pattern of 3.5–6.5 mg P/L soil/d over a 28 days sampling period was observed. No differences for plant biomass yield were observed. In conclusion, the results highlight the suitability of most struvite to enter the EU fertilizer market.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000603487500029 Publication Date 2020-11-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697; 1879-1026 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.9 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.9  
  Call Number UA @ admin @ c:irua:173944 Serial 8638  
Permanent link to this record
 

 
Author Gielis, J.; Brasili, S. doi  openurl
  Title The apeirogon and dual numbers Type A1 Journal article
  Year (up) 2021 Publication Symmetry : culture and science Abbreviated Journal  
  Volume 32 Issue 2 Pages 157-160  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The richness, diversity, connection, depth and pleasure of studying symmetry continue to open doors. Here we report a connection between Coxeter's Apeirogon and the geometry associated with pictorial space, parabolic rotation and dual numbers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000670122100011 Publication Date 2021-07-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0865-4824 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:179759 Serial 8652  
Permanent link to this record
 

 
Author Baij, L.; Liu, C.; Buijs, J.; Alvarez Martin, A.; Westert, D.; Raven, L.; Geels, N.; Noble, P.; Sprakel, J.; Keune, K. doi  openurl
  Title Understanding and optimizing Evolon® CR for varnish removal from oil paintings Type A1 Journal article
  Year (up) 2021 Publication Heritage science Abbreviated Journal  
  Volume 9 Issue 1 Pages 155-17  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp X-ray Imaging and Spectroscopy (AXIS)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2021-11-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7445 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:183747 Serial 8707  
Permanent link to this record
 

 
Author Maso, L.; Trande, M.; Liberi, S.; Moro, G.; Daems, E.; Linciano, S.; Sobott, F.; Covaceuszach, S.; Cassetta, A.; Fasolato, S.; Moretto, L.M.; De Wael, K.; Cendron, L.; Angelini, A. pdf  doi
openurl 
  Title Unveiling the binding mode of perfluorooctanoic acid to human serum albumin Type A1 Journal article
  Year (up) 2021 Publication Protein Science Abbreviated Journal Protein Sci  
  Volume 30 Issue 4 Pages 830-841  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Perfluorooctanoic acid (PFOA) is a toxic compound that is absorbed and distributed throughout the body by noncovalent binding to serum proteins such as human serum albumin (hSA). Though the interaction between PFOA and hSA has been already assessed using various analytical techniques, a high resolution and detailed analysis of the binding mode is still lacking. We report here the crystal structure of hSA in complex with PFOA and a medium-chain saturated fatty acid (FA). A total of eight distinct binding sites, four occupied by PFOAs and four by FAs, have been identified. In solution binding studies confirmed the 4:1 PFOA-hSA stoichiometry and revealed the presence of one high and three low affinity binding sites. Competition experiments with known hSA-binding drugs allowed locating the high affinity binding site in sub-domain IIIA. The elucidation of the molecular basis of the interaction between PFOA and hSA might provide not only a better assessment of the absorption and elimination mechanisms of these compounds in vivo but also have implications for the development of novel molecular receptors for diagnostic and biotechnological applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000625392600001 Publication Date 2021-02-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0961-8368 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.523 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 2.523  
  Call Number UA @ admin @ c:irua:176725 Serial 8714  
Permanent link to this record
 

 
Author Laroussi, M.; Bekeschus, S.; Keidar, M.; Bogaerts, A.; Fridman, A.; Lu, X.; Ostrikov, K.; Hori, M.; Stapelmann, K.; Miller, V.; Reuter, S.; Laux, C.; Mesbah, A.; Walsh, J.; Jiang, C.; Thagard, S.M.; Tanaka, H.; Liu, D.; Yan, D.; Yusupov, M. pdf  url
doi  openurl
  Title Low-Temperature Plasma for Biology, Hygiene, and Medicine: Perspective and Roadmap Type A1 Journal article
  Year (up) 2022 Publication IEEE transactions on radiation and plasma medical sciences Abbreviated Journal IEEE Trans. Radiat. Plasma Med. Sci.  
  Volume 6 Issue 2 Pages 127-157  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma, the fourth and most pervasive state of matter in the visible universe, is a fascinating medium that is connected to the beginning of our universe itself. Man-made plasmas are at the core of many technological advances that include the fabrication of semiconductor devices, which enabled the modern computer and communication revolutions. The introduction of low temperature, atmospheric pressure plasmas to the biomedical field has ushered a new revolution in the healthcare arena that promises to introduce plasma-based therapies to combat some thorny and long-standing medical challenges. This article presents an overview of where research is at today and discusses innovative concepts and approaches to overcome present challenges and take the field to the next level. It is written by a team of experts who took an in-depth look at the various applications of plasma in hygiene, decontamination, and medicine, made critical analysis, and proposed ideas and concepts that should help the research community focus their efforts on clear and practical steps necessary to keep the field advancing for decades to come.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000750257400005 Publication Date 2021-12-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-7311 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Research Foundation—Flanders, 1200219N ; Approved Most recent IF: NA  
  Call Number PLASMANT @ plasmant @c:irua:185875 Serial 6907  
Permanent link to this record
 

 
Author Park, D.-s.; Hadad, M.; Riemer, L.M.; Ignatans, R.; Spirito, D.; Esposito, V.; Tileli, V.; Gauquelin, N.; Chezganov, D.; Jannis, D.; Verbeeck, J.; Gorfman, S.; Pryds, N.; Muralt, P.; Damjanovic, D. url  doi
openurl 
  Title Induced giant piezoelectricity in centrosymmetric oxides Type A1 Journal article
  Year (up) 2022 Publication Science Abbreviated Journal Science  
  Volume 375 Issue 6581 Pages 653-657  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Giant piezoelectricity can be induced in centrosymmetric oxides by controlling the long-range motion of oxygen vacancies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000753975300036 Publication Date 2022-02-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0036-8075 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 56.9 Times cited 51 Open Access OpenAccess  
  Notes D.-S.P., V.E., N.P., P.M., and D.D. acknowledge the European Commission for project Biowings H2020 Fetopen 2018-2022 (grant no. 80127). N.P. acknowledges funding from the Villum Fonden for the NEED project (grant no. 00027993) and the Danish Council for Independent Research Technology and Production Sciences for the DFF-Research Project 3 (grant no. 00069B). S.G. acknowledges funding from the Israel Science Foundation (research grant 1561/18 and equipment grant 2247/18). This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant no. 823717 – ESTEEM3. D.C. acknowledges TOP/BOF funding of the University of Antwerp. M.H. and P.M. acknowledge funding from the Swiss National Science Foundation (grant nos. 200020-162664/1 and 200021-143424/1); esteem3reported; esteem3TA Approved Most recent IF: 56.9  
  Call Number EMAT @ emat @c:irua:185876 Serial 6909  
Permanent link to this record
 

 
Author Van Everbroeck, T.; Wu, J.; Arenas-Esteban, D.; Ciocarlan, R.-G.; Mertens, M.; Bals, S.; Dujardin, C.; Granger, P.; Seftel, E.M.; Cool, P. url  doi
openurl 
  Title ZnAl layered double hydroxide based catalysts (with Cu, Mn, Ti) used as noble metal-free three-way catalysts Type A1 Journal article
  Year (up) 2022 Publication Applied clay science Abbreviated Journal Appl Clay Sci  
  Volume 217 Issue Pages 106390  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000795870100004 Publication Date 2022-01-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-1317 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.6 Times cited 6 Open Access OpenAccess  
  Notes The authors acknowledge financial support by theEuropean Union’s Horizon 2020 Project Partial-PGMs (H2020-NMP-686086). R-G C. and P.C. acknowledge the FWO-Flanders (project no. G038215N) for financial support. S⋅B and D.A.E thank the financial support of the European Research Council (ERC-CoG-2019 815128). The authors are grateful to Johnson Matthey, UK, for supplying the commercial benchmark catalysts; realnano; sygmaSB Approved Most recent IF: 5.6  
  Call Number EMAT @ emat @c:irua:186956 Serial 6955  
Permanent link to this record
 

 
Author Meng, X.; Chen, S.; Peng, H.; Bai, H.; Zhang, S.; Su, X.; Tan, G.; Van Tendeloo, G.; Sun, Z.; Zhang, Q.; Tang, X.; Wu, J. pdf  doi
openurl 
  Title Ferroelectric engineering : enhanced thermoelectric performance by local structural heterogeneity Type A1 Journal article
  Year (up) 2022 Publication Science China : materials Abbreviated Journal Sci China Mater  
  Volume Issue Pages  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Although traditional ferroelectric materials are usually dielectric and nonconductive, GeTe is a typical ferroelectric semiconductor, possessing both ferroelectric and semiconducting properties. GeTe is also a widely studied thermoelectric material, whose performance has been optimized by doping with various elements. However, the impact of the ferroelectric domains on the thermoelectric properties remains unclear due to the difficulty to directly observe the ferroelectric domains and their evolutions under actual working conditions where the material is exposed to high temperatures and electric currents. Herein, based on in-situ investigations of the ferroelectric domains and domain walls in both pure and Sb-doped GeTe crystals, we have been able to analyze the dynamic evolution of the ferroelectric domains and domain walls, exposed to an electric field and temperature. Local structural heterogeneities and nano-sized ferroelectric domains are generated due to the interplay of the Sb3+ dopant and the Ge-vacancies, leading to the increased number of charged domain walls and a much improved thermoelectric performance. This work reveals the fundamental mechanism of ferroelectric thermoelectrics and provides insights into the decoupling of previously interdependent properties such as thermo-power and electrical conductivity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000749973500001 Publication Date 2022-02-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2095-8226; 2199-4501 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.1 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 8.1  
  Call Number UA @ admin @ c:irua:186429 Serial 6959  
Permanent link to this record
 

 
Author Sun, C.; Liao, X.; Peng, H.; Zhang, C.; Van Tendeloo, G.; Zhao, Y.; Wu, J. url  doi
openurl 
  Title Interfacial gliding-driven lattice oxygen release in layered cathodes Type A1 Journal article
  Year (up) 2022 Publication Cell reports physical science Abbreviated Journal  
  Volume 3 Issue 1 Pages  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The oxygen release of layered cathodes causes many battery failures, but the underlying mechanism in an actual working cathode is still elusive as it involves secondary agglomerates that introduce complicated boundary structures. Here, we report a general structure instability on the mismatch boundaries driven by interfacial gliding-it introduces a shear stress causing a distortion of the metal-oxygen octahedra framework that reduces its kinetic stability. The migration of cations and diffusion of oxygen vacancies continue to degrade the whole particle from the boundary to the interior, followed by the formation of nano-sized cracks on the fast-degrading interfaces. This work reveals a robust chemical and mechanical interplay on the oxygen release inherent to the intergranular boundaries of layered cathodes. It also suggests that radially patterned columnar grains with low-angle planar boundaries would be an efficient approach to mitigate the boundary oxygen release.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000745659500012 Publication Date 2021-12-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:186420 Serial 6961  
Permanent link to this record
 

 
Author Missen, O.P.; Mills, S.J.; Canossa, S.; Hadermann, J.; Nenert, G.; Weil, M.; Libowitzky, E.; Housley, R.M.; Artner, W.; Kampf, A.R.; Rumsey, M.S.; Spratt, J.; Momma, K.; Dunstan, M.A. url  doi
openurl 
  Title Polytypism in mcalpineite : a study of natural and synthetic Cu₃TeO₆ Type A1 Journal article
  Year (up) 2022 Publication Acta Crystallographica. Section B: Structural Science, Crystal Engineering and Materials (Online) Abbreviated Journal Acta Crystallogr B  
  Volume 78 Issue 1 Pages  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Synthetic and naturally occurring forms of tricopper orthotellurate, (Cu3TeO6)-Te-II-O-IV (the mineral mcalpineite) have been investigated by 3D electron diffraction (3D ED), X-ray powder diffraction (XRPD), Raman and infrared (IR) spectroscopic measurements. As a result of the diffraction analyses, (Cu3TeO6)-Te-II-O-IV is shown to occur in two polytypes. The higher-symmetric (Cu3TeO6)-Te-II-O-IV-1C polytype is cubic, space group 1a (3) over bar, with a = 9.537 (1) angstrom and V = 867.4 (3) angstrom(3) as reported in previous studies. The 1C polytype is a well characterized structure consisting of alternating layers of (CuO6)-O-II octahedra and both (CuO6)-O-II and (TeO6)-O-VI octahedra in a patchwork arrangement. The structure of the lower-symmetric orthorhombic (Cu3TeO6)-Te-II-O-IV-2O polytype was determined for the first time in this study by 3D ED and verified by Rietveld refinement. The 2O polytype crystallizes in space group Pcca, with a = 9.745 (3) angstrom, b = 9.749 (2) angstrom, c = 9.771 (2) angstrom and V = 928.3 (4) angstrom(3) . High-precision XRPD data were also collected on (Cu3TeO6)-Te-II-O-IV-2O to verify the lower-symmetric structure by performing a Rietveld refinement. The resultant structure is identical to that determined by 3D ED, with unit-cell parameters a = 9.56157 (19) angstrom, b = 9.55853 (11) angstrom, c = 9.62891 (15) angstrom and V = 880.03 (2) angstrom(3) . The lower symmetry of the 2O polytype is a consequence of a different cation ordering arrangement, which involves the movement of every second (CuO6)-O-II and (TeO6)-O-VI octahedral layer by (1/4, 1/4, 0), leading to an offset of (TeO6)-O-VI and (CuO6)-O-II octahedra in every second layer giving an ABAB* stacking arrangement. Syntheses of (Cu3TeO6)-Te-II-O-IV showed that low-temperature (473 K) hydrothermal conditions generally produce the 2O polytype. XRPD measurements in combination with Raman spectroscopic analysis showed that most natural mcalpineite is the orthorhombic 2O polytype. Both XRPD and Raman spectroscopy measurements may be used to differentiate between the two polytypes of (Cu3TeO6)-Te-II-O-IV. In Raman spectroscopy, (Cu3TeO6)-Te-II-O-IV-1C has a single strong band around 730 cm(-1), whereas (Cu3TeO6)-Te-II-O-IV-2O shows a broad double maximum with bands centred around 692 and 742 cm(-1).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000752899700003 Publication Date 2022-01-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2052-5206 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.9 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 1.9  
  Call Number UA @ admin @ c:irua:186529 Serial 6962  
Permanent link to this record
 

 
Author Yayak, Y.O.; Sozen, Y.; Tan, F.; Gungen, D.; Gao, Q.; Kang, J.; Yagmurcukardes, M.; Sahin, H. pdf  doi
openurl 
  Title First-principles investigation of structural, Raman and electronic characteristics of single layer Ge3N4 Type A1 Journal article
  Year (up) 2022 Publication Applied surface science Abbreviated Journal Appl Surf Sci  
  Volume 572 Issue Pages 151361  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract By means of density functional theory-based first-principle calculations, the structural, vibrational and electronic properties of single-layer Ge3N4 are investigated. Structural optimizations and phonon band dispersions reveal that single-layer ultrathin form of Ge3N4 possesses a dynamically stable buckled structure with large hexagonal holes. Predicted Raman spectrum of single-layer Ge3N4 indicates that the buckled holey structure of the material exhibits distinctive vibrational features. Electronic band dispersion calculations indicate the indirect band gap semiconducting nature of single-layer Ge3N4. It is also proposed that single-layer Ge3N4 forms type-II vertical heterostructures with various planar and puckered 2D materials except for single-layer GeSe which gives rise to a type-I band alignment. Moreover, the electronic properties of single-layer Ge3N4 are investigated under applied external in-plane strain. It is shown that while the indirect gap behavior of Ge3N4 is unchanged by the applied strain, the energy band gap increases (decreases) with tensile (compressive) strain.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000723664000006 Publication Date 2021-10-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-4332 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.7 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 6.7  
  Call Number UA @ admin @ c:irua:184752 Serial 6993  
Permanent link to this record
 

 
Author Privat-Maldonado, A.; Verloy, R.; Cardenas Delahoz, E.; Lin, A.; Vanlanduit, S.; Smits, E.; Bogaerts, A. url  doi
openurl 
  Title Cold Atmospheric Plasma Does Not Affect Stellate Cells Phenotype in Pancreatic Cancer Tissue in Ovo Type A1 Journal article
  Year (up) 2022 Publication International Journal Of Molecular Sciences Abbreviated Journal Int J Mol Sci  
  Volume 23 Issue 4 Pages 1954  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Center for Oncological Research (CORE)  
  Abstract Pancreatic ductal adenocarcinoma (PDAC) is a challenging neoplastic disease, mainly due to the development of resistance to radio- and chemotherapy. Cold atmospheric plasma (CAP) is an alternative technology that can eliminate cancer cells through oxidative damage, as shown in vitro, in ovo, and in vivo. However, how CAP affects the pancreatic stellate cells (PSCs), key players in the invasion and metastasis of PDAC, is poorly understood. This study aims to determine the effect of an anti-PDAC CAP treatment on PSCs tissue developed in ovo using mono- and co-cultures of RLT-PSC (PSCs) and Mia PaCa-2 cells (PDAC). We measured tissue reduction upon CAP treatment and mRNA expression of PSC activation markers and extracellular matrix (ECM) remodelling factors via qRT-PCR. Protein expression of selected markers was confirmed via immunohistochemistry. CAP inhibited growth in Mia PaCa-2 and co-cultured tissue, but its effectiveness was reduced in the latter, which correlates with reduced ki67 levels. CAP did not alter the mRNA expression of PSC activation and ECM remodelling markers. No changes in MMP2 and MMP9 expression were observed in RLT-PSCs, but small changes were observed in Mia PaCa-2 cells. Our findings support the ability of CAP to eliminate PDAC cells, without altering the PSCs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000763630900001 Publication Date 2022-02-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1422-0067 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.6 Times cited Open Access OpenAccess  
  Notes The authors would like to thank Hanne Verswyvel for her support with sample collection from the in ovo model and Peter Ponsaerts for providing the facilities for the microscopy studies. Approved Most recent IF: 5.6  
  Call Number PLASMANT @ plasmant @c:irua:187155 Serial 7049  
Permanent link to this record
 

 
Author Idrissi, H.; Carrez, P.; Cordier, P. url  doi
openurl 
  Title On amorphization as a deformation mechanism under high stresses Type A1 Journal article
  Year (up) 2022 Publication Current opinion in solid state and materials science Abbreviated Journal Curr Opin Solid St M  
  Volume 26 Issue 1 Pages 100976-17  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In this paper we review the work related to amorphization under mechanical stress. Beyond pressure, we highlight the role of deviatoric or shear stresses. We show that the most recent works make amorphization appear as a deformation mechanism in its own right, in particular under extreme conditions (shocks, deformations under high stresses, high strain-rates).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000779433300002 Publication Date 2022-01-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-0286 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 11  
  Call Number UA @ admin @ c:irua:188014 Serial 7064  
Permanent link to this record
 

 
Author Zhang, L.; Heijkers, S.; Wang, W.; Martini, L.M.; Tosi, P.; Yang, D.; Fang, Z.; Bogaerts, A. pdf  url
doi  openurl
  Title Dry reforming of methane in a nanosecond repetitively pulsed discharge: chemical kinetics modeling Type A1 Journal article
  Year (up) 2022 Publication Plasma Sources Science & Technology Abbreviated Journal Plasma Sources Sci T  
  Volume 31 Issue 5 Pages 055014  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Nanosecond pulsed discharge plasma shows a high degree of non-equilibrium, and exhibits relatively high conversions in the dry reforming of methane. To further improve the application, a good insight of the underlying mechanisms is desired. We developed a chemical kinetics model to explore the underlying plasma chemistry in nanosecond pulsed discharge. We compared the calculated conversions and product selectivities with experimental results, and found reasonable agreement in a wide range of specific energy input. Hence, the chemical kinetics model is able to provide insight in the underlying plasma chemistry. The modeling results predict that the most important dissociation reaction of CO<sub>2</sub>and CH<sub>4</sub>is electron impact dissociation. C<sub>2</sub>H<sub>2</sub>is the most abundant hydrocarbon product, and it is mainly formed upon reaction of two CH<sub>2</sub>radicals. Furthermore, the vibrational excitation levels of CO<sub>2</sub>contribute for 85% to the total dissociation of CO<sub>2</sub>.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000797660000001 Publication Date 2022-05-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0963-0252 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.8 Times cited Open Access OpenAccess  
  Notes China Scholarship Council; National Natural Science Foundation of China, 11965018 ; This work is supported by the National Natural Science Foundation of China (Grant Nos. 52077026, 11965018), L Zhang was also supported by the China Scholarship Council (CSC). Data availability statement The data that support the findings of this study are available upon reasonable request from the authors. Approved Most recent IF: 3.8  
  Call Number PLASMANT @ plasmant @c:irua:188537 Serial 7069  
Permanent link to this record
 

 
Author Bogaerts, A.; Neyts, E.C.; Guaitella, O.; Murphy, A.B. pdf  url
doi  openurl
  Title Foundations of plasma catalysis for environmental applications Type A1 Journal article
  Year (up) 2022 Publication Plasma Sources Science & Technology Abbreviated Journal Plasma Sources Sci T  
  Volume Issue Pages  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma catalysis is gaining increasing interest for various applications, but the underlying mechanisms are still far from understood. Hence, more fundamental research is needed to understand these mechanisms. This can be obtained by both modelling and experiments. This foundations paper describes the fundamental insights in plasma catalysis, as well as efforts to gain more insights by modelling and experiments. Furthermore, it discusses the state-of-the-art of the major plasma catalysis applications, as well as successes and challenges of technology transfer of these applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000804396200001 Publication Date 2022-03-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0963-0252 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.8 Times cited Open Access OpenAccess  
  Notes H2020 Marie Skłodowska-Curie Actions, 823745 ; H2020 European Research Council, 810182 ; We acknowldege financial support from the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation programme (Grant Agreement No. 810182 – SCOPE ERC Synergy project) and the European Union’s Horizon 2020 Research and Innovation programme under the Marie Sklodowska-Curie Grant Agreement No. 813393 (PIONEER). Approved Most recent IF: 3.8  
  Call Number PLASMANT @ plasmant @c:irua:188539 Serial 7070  
Permanent link to this record
 

 
Author Ding, Y.; Maitra, S.; Arenas Esteban, D.; Bals, S.; Vrielinck, H.; Barakat, T.; Roy, S.; Van Tendeloo, G.; Liu, J.; Li, Y.; Vlad, A.; Su, B.-L. url  doi
openurl 
  Title Photochemical production of hydrogen peroxide by digging pro-superoxide radical carbon vacancies in carbon nitride Type A1 Journal article
  Year (up) 2022 Publication Cell reports physical science Abbreviated Journal  
  Volume 3 Issue 5 Pages 100874-17  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Artificial photosynthesis of H2O2, an environmentally friendly oxidant and a clean fuel, holds great promise. However, improving its efficiency and stability for industrial implementation remains highly challenging. Here, we report the visible-light H2O2 artificial photosynthesis by digging pro-superoxide radical carbon vacancies in three-dimensional hierarchical porous g-C3N4 through a simple hydrolysis-freeze-drying-thermal treatment. A significant electronic structure change is revealed upon the implantation of carbon vacancies, broadening visible-light absorption and facilitating the photogenerated charge separation. The strong electron affinity of the carbon vacancies promotes superoxide radical (O-center dot(2)-) formation, significantly boosting the H2O2 photocatalytic production. The developed photocatalyst shows an H2O2 evolution rate of 6287.5 mM g(-1) h(-1) under visible-light irradiation with a long cycling stability being the best-performing photocatalyst among all reported g-C3N4-based systems. Our work provides fundamental insight into highly active and stable photocatalysts with great potential for safe industrial H2O2 production.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000805830100006 Publication Date 2022-04-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 12 Open Access OpenAccess  
  Notes Y.D. thanks the China Scholarship Council (201808310127) for financial support. This work is financially supported by the National Natural Science Foundation of China (U1663225) , Program for Changjiang Scholars and Innovative Research Team in University (IRT_15R52) of the Chinese Ministry of Education, Program of Introducing Talents of Discipline to Universities-Plan 111 (grant no. B20002) from the Ministry of Science and Technology and the Ministry of Education of China, and the National Key R&D Program of China (2016YFA0202602) . This research was also supported by the European Commission Interreg V France-Wallonie-Vlaanderen project “DepollutAir”. Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:189706 Serial 7090  
Permanent link to this record
 

 
Author Watanabe, Y.; Hyeon-Deuk, K.; Yamamoto, T.; Yabuuchi, M.; Karakulina, O.M.; Noda, Y.; Kurihara, T.; Chang, I.-Y.; Higashi, M.; Tomita, O.; Tassel, C.; Kato, D.; Xia, J.; Goto, T.; Brown, C.M.; Shimoyama, Y.; Ogiwara, N.; Hadermann, J.; Abakumov, A.M.; Uchida, S.; Abe, R.; Kageyama, H. url  doi
openurl 
  Title Polyoxocationic antimony oxide cluster with acidic protons Type A1 Journal article
  Year (up) 2022 Publication Science Advances Abbreviated Journal  
  Volume 8 Issue 24 Pages eabm5379-8  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The success and continued expansion of research on metal-oxo clusters owe largely to their structural richness and wide range of functions. However, while most of them known to date are negatively charged polyoxometalates, there is only a handful of cationic ones, much less functional ones. Here, we show an all-inorganic hydroxyiodide [H(10.)7Sb(32.1)O(44)][H2.1Sb2.1I8O6][Sb0.76I6](2)center dot 25H(2)O (HSbOI), forming a face-centered cubic structure with cationic Sb32O44 clusters and two types of anionic clusters in its interstitial spaces. Although it is submicrometer in size, electron diffraction tomography of HSbOI allowed the construction of the initial structural model, followed by powder Rietveld refinement to reach the final structure. The cationic cluster is characterized by the presence of acidic protons on its surface due to substantial Sb3+ deficiencies, which enables HSbOI to serve as an excellent solid acid catalyst. These results open up a frontier for the exploration and functionalization of cationic metal-oxo clusters containing heavy main group elements.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000812533800008 Publication Date 2022-06-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2375-2548 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.6 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 13.6  
  Call Number UA @ admin @ c:irua:189689 Serial 7091  
Permanent link to this record
 

 
Author Biondo, O.; Fromentin, C.; Silva, T.; Guerra, V.; van Rooij, G.; Bogaerts, A. pdf  url
doi  openurl
  Title Insights into the limitations to vibrational excitation of CO2: validation of a kinetic model with pulsed glow discharge experiments Type A1 Journal article
  Year (up) 2022 Publication Plasma Sources Science & Technology Abbreviated Journal Plasma Sources Sci T  
  Volume 31 Issue 7 Pages 074003  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Vibrational excitation represents an efficient channel to drive the dissociation of CO<sub>2</sub>in a non-thermal plasma. Its viability is investigated in low-pressure pulsed discharges, with the intention of selectively exciting the asymmetric stretching mode, leading to stepwise excitation up to the dissociation limit of the molecule. Gas heating is crucial for the attainability of this process, since the efficiency of vibration–translation (V–T) relaxation strongly depends on temperature, creating a feedback mechanism that can ultimately thermalize the discharge. Indeed, recent experiments demonstrated that the timeframe of V–T non-equilibrium is limited to a few milliseconds at ca. 6 mbar, and shrinks to the<italic>μ</italic>s-scale at 100 mbar. With the aim of backtracking the origin of gas heating in pure CO<sub>2</sub>plasma, we perform a kinetic study to describe the energy transfers under typical non-thermal plasma conditions. The validation of our kinetic scheme with pulsed glow discharge experiments enables to depict the gas heating dynamics. In particular, we pinpoint the role of vibration–vibration–translation relaxation in redistributing the energy from asymmetric to symmetric levels of CO<sub>2</sub>, and the importance of collisional quenching of CO<sub>2</sub>electronic states in triggering the heating feedback mechanism in the sub-millisecond scale. This latter finding represents a novelty for the modelling of low-pressure pulsed discharges and we suggest that more attention should be paid to it in future studies. Additionally, O atoms convert vibrational energy into heat, speeding up the feedback loop. The efficiency of these heating pathways, even at relatively low gas temperature and pressure, underpins the lifetime of V–T non-equilibrium and suggests a redefinition of the optimal conditions to exploit the ‘ladder-climbing’ mechanism in CO<sub>2</sub>discharges.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000839466500001 Publication Date 2022-07-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0963-0252 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.8 Times cited Open Access OpenAccess  
  Notes Fundação para a Ciência e a Tecnologia, PLA/0076/2021 ; H2020 Marie Skłodowska-Curie Actions, 813393 ; This research was supported by the European Union’s Horizon 2020 Research and Innovation programme under the Marie Sklodowska-Curie Grant Agreement No. 813393 (PIONEER). V Guerra and T Silva were partially funded by the Portuguese ‘FCT-Fundação para a Ciência e a Tecnologia’, under Projects UIDB/50010/2020, UIDP/50010/2020, PTDC/FISPLA/1616/2021 and EXPL/FIS-PLA/0076/2021. The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. Approved Most recent IF: 3.8  
  Call Number PLASMANT @ plasmant @c:irua:190008 Serial 7106  
Permanent link to this record
 

 
Author Shi, P.; Gielis, J.; Quinn, B.K.; Niklas, K.J.; Ratkowsky, D.A.; Schrader, J.; Ruan, H.; Wang, L.; Niinemets, Ü.; Niinennets, U. url  doi
openurl 
  Title ‘biogeom’ : an R package for simulating and fitting natural shapes Type A1 Journal article
  Year (up) 2022 Publication Annals of the New York Academy of Sciences Abbreviated Journal Ann Ny Acad Sci  
  Volume 1516 Issue 1 Pages 123-134  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Many natural objects exhibit radial or axial symmetry in a single plane. However, a universal tool for simulating and fitting the shapes of such objects is lacking. Herein, we present an R package called 'biogeom' that simulates and fits many shapes found in nature. The package incorporates novel universal parametric equations that generate the profiles of bird eggs, flowers, linear and lanceolate leaves, seeds, starfish, and tree-rings, and three growth-rate equations that generate the profiles of ovate leaves and the ontogenetic growth curves of animals and plants. 'biogeom' includes several empirical datasets comprising the boundary coordinates of bird eggs, fruits, lanceolate and ovate leaves, tree rings, seeds, and sea stars. The package can also be applied to other kinds of natural shapes similar to those in the datasets. In addition, the package includes sigmoid curves derived from the three growth-rate equations, which can be used to model animal and plant growth trajectories and predict the times associated with maximum growth rate. 'biogeom' can quantify the intra- or interspecific similarity of natural outlines, and it provides quantitative information of shape and ontogenetic modification of shape with important ecological and evolutionary implications for the growth and form of the living world.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000829772300001 Publication Date 2022-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0077-8923; 1749-6632 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.2 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 5.2  
  Call Number UA @ admin @ c:irua:189314 Serial 7131  
Permanent link to this record
 

 
Author Xie, Y.; Spiller, M.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title A bioreactor and nutrient balancing approach for the conversion of solid organic fertilizers to liquid nitrate-rich fertilizers : mineralization and nitrification performance complemented with economic aspects Type A1 Journal article
  Year (up) 2022 Publication The science of the total environment Abbreviated Journal Sci Total Environ  
  Volume 806 Issue Pages 150415  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Due to the high water- and nutrient-use efficiency, hydroponic cultivation is increasingly vital in progressing to environment-friendly food production. To further alleviate the environmental impacts of synthetic fertilizer production, the use of recovered nutrients should be encouraged in horticulture and agriculture at large. Solid organic fertilizers can largely contribute to this, yet their physical and chemical nature impedes application in hydroponics. This study proposes a bioreactor for mineralization and nitrification followed by a supplementation step for limiting macronutrients to produce nitrate-based solutions from solid fertilizers, here based on a novel microbial fertilizer. Batch tests showed that aerobic conversions at 35 °C could realize a nitrate (NO₃−-N) production efficiency above 90% and a maximum rate of 59 mg N L−1 d−1. In the subsequent bioreactor test, nitrate production efficiencies were lower (44–51%), yet rates were higher (175–212 mg N L−1 d−1). Calcium and magnesium hydroxide were compared to control the bioreactor pH at 6.0 ± 0.2, while also providing macronutrients for plant production. A mass balance estimation to mimic the Hoagland nutrient solution showed that 92.7% of the NO₃−-N in the Ca(OH)₂ scenario could be organically sourced, while this was only 37.4% in the Mg(OH)₂ scenario. Besides, carbon dioxide (CO₂) generated in the bioreactor can be used for greenhouse carbon fertilization to save operational expenditure (OPEX). An estimation of the total OPEX showed that the production of a nutrient solution from solid organic fertilizers can be cost competitive compared to using commercially available liquid inorganic fertilizer solutions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000707640400021 Publication Date 2021-09-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.8 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 9.8  
  Call Number UA @ admin @ c:irua:181787 Serial 7132  
Permanent link to this record
 

 
Author Shi, P.; Gielis, J.; Niklas, K.J. pdf  url
doi  openurl
  Title Comparison of a universal (but complex) model for avian egg shape with a simpler model Type Editorial
  Year (up) 2022 Publication Annals of the New York Academy of Sciences Abbreviated Journal Ann Ny Acad Sci  
  Volume 1514 Issue 1 Pages 34-42  
  Keywords Editorial; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Recently, a universal equation by Narushin, Romanov, and Griffin (hereafter, the NRGE) was proposed to describe the shape of avian eggs. While NRGE can simulate the shape of spherical, ellipsoidal, ovoidal, and pyriform eggs, its predictions were not tested against actual data. Here, we tested the validity of the NRGE by fitting actual data of egg shapes and compared this with the predictions of our simpler model for egg shape (hereafter, the SGE). The eggs of nine bird species were sampled for this purpose. NRGE was found to fit the empirical data of egg shape well, but it did not define the egg length axis (i.e., the rotational symmetric axis), which significantly affected the prediction accuracy. The egg length axis under the NRGE is defined as the maximum distance between two points on the scanned perimeter of the egg's shape. In contrast, the SGE fitted the empirical data better, and had a smaller root-mean-square error than the NRGE for each of the nine eggs. Based on its mathematical simplicity and goodness-of-fit, the SGE appears to be a reliable and useful model for describing egg shape.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000803394100001 Publication Date 2022-06-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0077-8923; 1749-6632 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.2 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 5.2  
  Call Number UA @ admin @ c:irua:188470 Serial 7139  
Permanent link to this record
 

 
Author Ying, J.; Lenaerts, S.; Symes, M.D.; Yang, X.-Y. url  doi
openurl 
  Title Hierarchical design in nanoporous metals Type A1 Journal article
  Year (up) 2022 Publication Advanced Science Abbreviated Journal Adv Sci  
  Volume 9 Issue 27 Pages 2106117-2106120  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Hierarchically porous metals possess intriguing high accessibility of matter molecules and unique continuous metallic frameworks, as well as a high level of exposed active atoms. High rates of diffusion and fast energy transfer have been important and challenging goals of hierarchical design and porosity control with nanostructured metals. This review aims to summarize recent important progress toward the development of hierarchically porous metals, with special emphasis on synthetic strategies, hierarchical design in structure-function and corresponding applications. The current challenges and future prospects in this field are also discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000831201000001 Publication Date 2022-07-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2198-3844 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 15.1 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 15.1  
  Call Number UA @ admin @ c:irua:189646 Serial 7170  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: