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Abstract

Many natural objects exhibit radial or axial symmetry in a single plane. However, a

universal tool for simulating and fitting the shapes of such objects is lacking. Herein,

we present an R package called ‘biogeom’ that simulates and fits many shapes found

in nature. The package incorporates novel universal parametric equations that gener-

ate the profiles of bird eggs, flowers, linear and lanceolate leaves, seeds, starfish, and

tree-rings, and three growth-rate equations that generate the profiles of ovate leaves

and the ontogenetic growth curves of animals and plants. ‘biogeom’ includes several

empirical datasets comprising the boundary coordinates of bird eggs, fruits, lanceolate

and ovate leaves, tree rings, seeds, and sea stars. The package can also be applied to

other kinds of natural shapes similar to those in the datasets. In addition, the package

includes sigmoid curves derived from the three growth-rate equations, which can be

used to model animal and plant growth trajectories and predict the times associated

withmaximum growth rate. ‘biogeom’ can quantify the intra- or interspecific similarity

of natural outlines, and it provides quantitative information of shape and ontogenetic

modification of shape with important ecological and evolutionary implications for the

growth and form of the living world.
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INTRODUCTION

Many natural objects exhibit some degree of symmetry or handed-

ness, features that have garnered the attention of many biologists and

geometricians.1–6 Researchers have long attempted to develop spe-

cial models for describing the shapes of certain types of biological

objects (e.g., Refs. 4 and 6). However, efforts to build a universal geo-

metric formula for a wide range of natural shapes have been largely

unsuccessful. A notable exception is Gielis,3 who created a universal

formula (henceforth referred to as the Gielis equation) that can sim-

ulate awide range of diverse shapes, especially thosewith symmetrical

features.7 However, the validity of the Gielis equation was not tested

using actual data fromnatural geometries until 12 years later, when Shi

et al.8 carried out a pioneering study modeling the leaf boundaries of

four species of bamboo (Poaceae: Bambusoideae). The original version

of the Gielis equation has seven parameters and it has been simpli-

fied for fitting different natural geometries to reduce its complexity.

Subsequently, several studies have been published testing the valid-

ity of the Gielis equation using empirical data of leaves, seeds, and

fruits, bird eggs, and sea stars.9–16 All of these studies have validated

the universality of the Gielis equation in describing natural geome-

tries. In addition, a large number of other natural geometries have

been simulated by this equation, although the validity of the Gielis

equation in fitting those shapes has not been examined thus far.17 In

addition, when studying certain symmetrical geometries (i.e., sea stars

with pentaradial symmetry and fruit capsules with triradial symme-

try), a “twin” version of the Gielis equation has been proposed, which

provides a better goodness-of-fit and a better representation of radial

symmetry.12,15 Although neither the Gielis equation nor its twin ver-

sion have been widely applied in ecological and evolutionary research,

these equations are apparently useful as parametric models. Their

simplified versions includemodel parameters that can be used as quan-

titative traits to explore potential intra- and interspecific variation in

shapes and as such can provide key insights into the ecological role

of shape variation and the evolution of shape.9,10,15 The difficulty in

the application of all such geometric equations in biology is the lim-

ited availability of software packages to carry out data simulation and

fitting.

Although theGielis equation and its simplified versions can describe

and fit many symmetrical or spirally arranged natural geometries,

the models themselves cannot reveal the extent of the (a)symmetry

exhibited by such shapes. For bilaterally symmetrical objects, previous

studies have indicated that taking some landmarks on the boundary

of an object to measure the extent of its (a)symmetry is particularly

helpful.2 Nevertheless, for many objects with unbroken boundaries,

for example, bird eggs and ovate leaves, it is difficult to accurately

define the corresponding landmarks along the axis of symmetry. Shi

et al.18 previously proposed a standardized index for measuring the

bilateral (a)symmetry of objects. However, this method has not been

included in any software packages so far. In addition, because of the

high degree of leaf-shape variation for ovate leaves (i.e., variations

in the curvature of leaf boundaries across different plant species),

this class of leaf shapes cannot be accurately represented by the

Gielis equation, and additional equations are needed to describe such

variations.19

In thermal biology, many temperature-dependent development

models are used to reflect the effect of temperature on organismal

developmental rates (i.e., the reciprocal of the developmental time

required to complete a specific developmental stage). Prior studies

have shown that the integral forms of temperature-dependent devel-

opmental (or growth) rate models can produce sigmoid growth curves,

which can be used to describe the growth trajectories of many ani-

mals and plants.20–22 In such cases, “time” replaces “temperature” as

the independent (x-axis) variable. However, the integral forms of the

more complex developmental rate models have no clear mathemati-

cal expressions. It is useful, therefore, to use the numerical integral

approach to estimate the parameters of integrated developmental rate

models. This also requires a software package to combine and carry out

these complex calculations.

To aid researchers in simulating and fitting biological shapes, we

have developed an R package called ‘biogeom’. In addition, this pack-

age has other functions related to biological geometries, including one

allowing the calculation of the fractal dimension of a leaf venation

network23,24 and a recently published egg-shapemodel.6

SUBJECT MODELS AND DATA FITTING METHODS

The Gielis equation and its twin version

The superellipse equation is an extension of the ellipse equation, but

it can produce a more diverse array of variable curves, from dia-

monds to rectangles (Figure1A). The superellipse equationwas initially

represented as:

|||| xA ||||
n

+
|||| yB ||||

n

= 1, (1)

where x and y represent the abscissa and ordinate of a curve transcrib-

ing a shape in the Cartesian coordinate system, and A and B are the

major semi-axis and minor semi-axis of the superellipse, respectively.

In the polar coordinate system, Equation (1) can be expressed as:

r = a
(|cosφ|n + ||||1k sinφ

||||
n)−

1

n

, (2)

where r is the polar radius at the polar angle φ, a = A, and k = B/A.

This reparameterized equation reduces the parameter-effects curva-

ture and increases the close-to-linear behavior of the equation during

nonlinear fitting.25,26

Gielis3 extended the superellipse equation to take the form:

r =
(||||1A cos

m
4
φ
||||
n2
+
||||1B sin

m
4
φ
||||
n3)−

1

n1
, (3)

where m is a positive integer that determines the number of angles of

the curve within [0, 2π), and A, B, n1, n2, and n3 are parameters to be
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F IGURE 1 Shapes simulated by the ‘biogeom’ package. (A) A group of simulated superellipse curves based on Equation (2), that is, the
superellipse equation. (B)Medal outlines simulated based on the Gielis equation and its simplified versions. (C) Three egg shapes simulated based
on a simplified version of the Gielis equation. (D) The right-skewed (red) and left-skewed (blue) growth-rate curves based on Equation (9), that is,
themodified Lobry–Rosso–Flandrois equation (MLRFE). (E) A group of ovate leaf shapes simulated based on two axisymmetrical curves generated
by theMLRFE. (F) A group of sigmoid growth curves (representing the absolute growth amount of a measure of interest, e.g., organismal size, and
population density) based on the numerical integration of theMLRFE. The detailedmodel parameters for each panel can be found in Appendix S1.
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F IGURE 2 Framework of the ‘biogeom’ package. There are twomodules: one for simulating natural geometries, and another for fitting natural
geometries.

estimated.Wehave typically used this equation in a re-expressed form:

r = a
(||||cos m4 φ||||

n2
+
||||1k sin

m
4
φ
||||
n3)−

1

n1
, (4)

where a = An2∕n1 and k = B∕An2∕n3 . For convenience, Equation (4) is

referred to as the Gielis equation. When n2 = n3, the Gielis equation

can produce curves with rich axial or radial symmetry within [0, 2π).
Figure 2B shows the use of several Gielis curves to form amedal’s pro-

file, and Figure 2C shows three egg shapes produced by a simplified

Gielis equation.16

The polar radius of the Gielis equation (r) is a linear function of the

elementary polar radius (re) on a log-log scale, and the slope is equal to

−1∕n1. This can be seenwhenwe define an elementary polar radius (re)

as:

re =
||||cos m4 φ||||

n2
+
||||1k sin

m
4
φ
||||
n3
. (5)

Shi et al.12 proposed a hyperbolic relationship between the Gielis

and elementary polar radii to better describe the shapes of some sea

stars:

ln(r) =
1

α + β ⋅ ln(re)
+ γ, (6)

where α, β, and γ are parameters to be estimated. We refer to

Equation (6) as the twin Gielis equation.

Rate equations and their extensions

‘biogeom’ combines three rate equations because the Gielis equation

and its twin version cannot describe all natural shapes. For common

ovate leaves,weneed tousea rate equation to forma leaf-shapemodel.

When two axially symmetrical rate equations along the x-axis are com-

bined into one, we find that it can describe and fit a variety of ovate

leaf shapes especiallywell.19 Therefore,we added three rate equations

to ‘biogeom’. The three rate equations can be used to produce sigmoid

curves by integration.20–22 However, there are no explicit analytical

solutions for their integrated forms (i.e., the ontogenetic equations

based on the rate equations). Therefore, we also provided a numerical

fittingmethod to estimate the parameters of the rate equations.

The effect of temperature on the development (or growth) rate

of organisms is represented as a left-skewed curve. In the low-

temperature range, the rate increases exponentially from a lower

threshold temperature above which development (or growth) begins.

In the mid-temperature range, the rate increases linearly toward

a maximum value. And in the high-temperature region, the rate

sharply decreases until an upper (sometimes lethal) threshold tem-

perature is reached, above which development (or growth) ceases

(Figure 1C).27,28 Many temperature-dependent developmental (or

growth) rate equations are used to describe the effect of tempera-

ture on the developmental rates of arthropods or the growth rates

of microbial populations.29–33 The ‘biogeom’ package includes three

of these models: the beta equation,34 the Brière equation,35 and the

Lobry-Rosso-Flandrois equation,36,37 and their generalized versions.

All three of these models include the lower and upper threshold

temperatures as model parameters. Interestingly, the beta and Lobry-

Rosso-Flandrois models have the same number of parameters that

have similar biological and geometrical meanings.21 Herein, we used

the original Lobry-Rosso-Flandrois equation36,37 to plot the shape of

a curve (Figure 1D) using the equation:

y =
yc (x − x2) (x − x1)

2

(xc − x1) [(xc − x1) (x − xc) − (xc − x2) (xc + x1 − 2x)]
, (7)
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F IGURE 3 Observed (gray) and predicted (red) geometries (boundary coordinates). (A) A bamboo leaf. (B) A bird egg. (C) The side projection of
a ginkgo seed. (D) The vertical projection of a fruit of the golden rain tree. (E) Tree rings in a cross-section of the stem of a white spruce tree. (F) A
sea star. RMSE is the root-mean-square error between the observed and predicted polar radii. The estimatedmodel parameters can be found in
Appendix S1. These geometries were all considered to fit the Gielis equation, because the superellipse equation (panel A) is a special case of the
Gielis equation (i.e., Equation 4).
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where y represents the developmental (or growth) rate at tempera-

ture x (◦C); yc represents the maximum rate, occurring at temperature

xc; x1 and x2 represent the lower and upper threshold temperatures

for development (or growth); and y = 0 when x > x2 or x < x1. When

replacing temperature with time in Equation (7), we obtain a growth

rate versus time curve. Equation (7) only produces a left-skewed curve

when
(x1+x2)

2
≤ x ≤ x236,37 When x1 ≤ x ≤

x1+x2
2

, it is necessary to use

the following equation (Figure 1C):21

y =
yc (x − x1) (x − x2)

2

(x2 − xc) [(x2 − xc) (x − xc) − (x1 − xc) (xc + x2 − 2x)]
. (8)

To increase the versatility of the Lobry-Rosso-Flandrois equation in

curve fitting (i.e., to increase the range of curves with different curva-

tures that can be fitted using Equation 8), an additional parameter, δ,
was introduced:21

y =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

yc

{
(x−x1)(x−x2)

2

(x2−xc)[(x2−xc)(x−xc)−(x1−xc)(xc+x2−2x)]

}δ

, if x ∈
[
x1,

x1+x2
2

]
;

yc

{
(x−x2)(x−x1)

2

(xc−x1)[(xc−x1)(x−xc)−(xc−x2)(xc+x1−2x)]

}δ

, if x ∈
[
x1+x2

2
, x2

]
;

0, if x ∉ [x1, x2] .

(9)

An ovate leaf shape can be formed by setting a symmetrical func-

tionofEquation (9) around the x-axis, that is, f(x) = −y. Figure1E shows

the effect of δ on the shape of this curve. Hereafter, we refer to Equa-
tion (9) as the modified Lobry-Rosso-Flandrois equation (MLRFE) for

convenience. Themodified beta and Brèire equations were obtained in

a similar way by adding the parameter δ to improve the elasticity of the

original beta and Brière equations in curve fitting.

We also derived a sigmoid growth equation to describe the growth

trajectories of animals and plants using the integral form of a rate

equation, that is:

y =

⎧⎪⎪⎨⎪⎪⎩

x
∫
x1
f (x) dx, if x ∈ [x1, x2] ;

0, if x < x1;
x2
∫
x1
f (x) dx, if x > x2.

(10)

Figure 1F shows the sigmoid growth curves plotted with different δ
values based on theMLRFE. Here, the x-axis of any rate equation used

to describe and fit ovate leaf shape does not represent temperature or

time. Rather, it represents the distance from the leaf base (i.e., the con-

nection between a leaf lamina and the petiole) to a point along the leaf

length axis.

Data fitting methods

To estimate the parameters of the Gielis equation, the twin Gielis

equation, and their simplified versions, it is necessary to know the

planar coordinates of a scanned or photographed natural object.

These coordinates can be obtained using the protocols proposed in

Refs. 8, 10, and 11. In a standard Gielis curve, the polar point is located

at the origin (0, 0), and the major axis (defined as the straight line

through the two points, (r(φ = 0), 0) and (r(φ = π), 0) is superimposed

on the x-axis. However, many scanned or photographed shapes devi-

ate from the standard forms predicted by the Gielis equation or its

extended or simplified versions. Thus, three additional location param-

eters (i.e., the x- and y-coordinates of the polar point and the angle

between the major axis and the x-axis) are needed when carrying out

the nonlinear fitting procedure.16 We aimed to minimize the residual

sum of squares (RSS) between the observed (ri) and the predicted (r̂i)

polar radii to estimate the model parameters of the Gielis equation or

its extended or simplified versions:

RSS =

N∑
i=1

(ri − r̂i)
2, (11)

where the subscript i represents the i-th data point on the boundary

of an image of interest, and N represents the number of data points

on the boundary. The Nelder-Mead optimization approach38 is used to

minimize the RSS to obtain the numerical values of model parameters.

To estimate the parameters of the ovate leaf-shape models and

the sigmoid growth equations, it is also necessary to extract the pla-

nar coordinates of the boundary of an image. The RSS between the

observations of the y-coordinates (yi) and the predicted y-coordinates

(ŷi) are subsequently minimized using the Nelder-Mead optimization

approach,38 that is:

RSS =

N∑
i=1

(yi − ŷi)
2 , (12)

where i andN are the same as those in Equation (11).

FRAMEWORK OF BIOGEOM AND ITS FUNCTIONS

There are two main modules in ‘biogeom’, one for simulating and

another for fitting natural geometries (Figure 2). The former module

contains three classes of functions. The first class comprises universal

equations andassociatedutilities. The ‘GE’ and ‘TGE’ functions areused

to calculate the polar radii at different polar angles using the Gielis and

twin Gielis equations, respectively (see Equations 4 and 6). Some sim-

plified versions of the Gielis and twin Gielis equations can be specified

by changing the option of the simpver argument. The ‘curveGE’ func-

tion is used to produce plots of the Gielis curves based on the ‘GE’ and

‘TGE’ functions. The second class of functions comprises growth-rate

functions and their extensions, specifically the modified beta equation

(‘MbetaE’), modified Brière equation (‘MBriereE’), and ‘MLRFE’. The

‘curveovate’ function is used to generate the shape of an ovate leaf

based on one of the above three rate equations. The ‘sigmoid’ function

is used to generate sigmoid growth curves that reflect the growth tra-

jectories (e.g., mass, height, or length) of animals or plants. The third

function class in the shape module comprises the egg-shape model

because bird eggs are a common natural shape that have attracted a
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F IGURE 4 Observed (gray) and predicted (red) ovate leaf shape
(A), and the observed and predicted height values of bamboo plants
against time (B). The two curves both used themodified
Lobry–Rosso–Flandrois equation (MLRFE; Equation 9). RMSE is the
root-mean-square error between the observed and predicted y values.
The estimatedmodel parameters can be found in Appendix S1.

lot of attention.6,16,39,40 Although the ‘GE’ function can produce such a

shape, it is necessary to provide a reference model for it. The ‘NRGE’

function6 is used to produce the y-coordinates when the x-coordinates

are along the boundary of the upper part of an egg in the plane. The

‘curveNRGE’ function is used to simulate an integrated egg shape in the

Euclidean coordinate system (i.e., a side view of the egg).

The data fitting module provides empirical datasets (‘bam-

booleaves’, ‘eggs’, ‘ginkgoseed’, ‘kp’, ‘Neocinnamomum’, ‘starfish’,

‘whitespruce’, ‘shoots’, and ‘veins’), the data adjustment function (‘adj-

data’), functions for data-fitting (‘fitGE’, ‘fitNRGE’, and ‘fitovate’), and a

function (‘fracdim’) for calculating the fractal dimension of leaf veins or

leaf boundaries (Figure2).With the exceptionof ‘shoots’ and ‘veins’, the

datasets provide the boundary coordinate data of natural geometrical

shapes: ‘bambooleaves’ consists of the boundary coordinate data of

six leaves of the bamboo Phyllostachys incarnata; ‘eggs’ consists of the

boundary coordinate data of nine species of avian eggs; ‘ginkgoseed’

consists of the boundary coordinate data of four side projections of

the seeds of the gymnosperm Gingko biloba cv. Fozhi; ‘kp’ consists of

the boundary coordinate data of four vertical projections of the fruits

of the golden rain tree (Koelreuteria paniculata); ‘Neocinnamomum’

consists of the boundary coordinate data of the leaves of seven species

of the genus Neocinnamomum; ‘starfish’ consists of the boundary

coordinate data of eight individual sea stars from five different species;

and ‘whitespruce’ consists of the planar coordinates of the tree rings

of the evergreen conifer Picea glauca. In a similar manner, ‘shoots’

consists of the height growth data of four species of bamboo; and

‘veins’ provides a dataset of leaf vein coordinates of broad-leaved

evergreen treeMichelia compressa. The data-fitting functions, including

‘fitGE’, ‘fitNRGE’, and ‘fitovate’, are used to fit the boundary coordinates

of natural geometries using the Gielis or twin Gielis equations or their

simplified versions, the egg-shape model, and the three ovate leaf-

shape models. Nevertheless, before using these data-fitting functions,

the boundary data should be adjusted by using the ‘adjdata’ function.

This function changes an input dataset so that it contains points

ordered counterclockwise along the shape boundary in the Euclidean

coordinate system. For shapes having one apparent axis of symmetry,

the ‘bilat’ function can be used to measure the extent of bilateral

(a)symmetry based on the adjusted boundary data. In addition to

the measure of bilateral (a)symmetry, the ‘bilat’ function can provide

descriptive data for a polygon transcribed by a shape, including its

area, length, width, perimeter, and so on. Height growth data (e.g.,

‘shoots’) do not need to be adjusted by the ‘bilat’ function before fitting

them using the ‘fitsigmoid’ function. In addition, the ‘fracdim’ function

is used to calculate the fractal dimension of a complex leaf venation

network (e.g., ‘veins’).

APPLICATIONS

‘biogeom’ was developed based on R (version 4.2.0),41 and requires

installation of the R packages ‘spatstat.geom’ (version 2.4-0) and

‘spatstat.data’ (version 2.1-4).42

library(spatstat.data)

library(spatstat.geom)

library(biogeom)

Below, we provide several examples of data simulation, data fitting,

quantification of the extent of leaf bilateral (a)symmetry, and calcula-

tion of leaf vein fractal dimension. As emphasized before, the scope

of the package application is not limited to leaves; the functions can

simulate and fit other natural geometries.
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1. An example of simulating two ovate leaf shapes based on two

different rate equations.

P1 <- c(1, 1, pi/4, 2, 3, 10, 2)

RE1 <- curveovate(MLRFE, P = P1, x = seq(0,

10, by = 0.1), fig.opt = TRUE)

RE2 <- curveovate(MbetaE, P = P1, x = seq(0,

10, by = 0.1), fig.opt = TRUE)

dev.new()

par(mar = c(5,5,2,2))

plot(RE1$x, RE1$y, cex.lab = 1.5, cex.axis =

1.5, xlab = expression(italic(x)), ylab =

expression(italic(y)))

lines(RE2$x, RE2$y, col = 4)

2. An example of fitting the boundary data of a bamboo leaf.

data(bambooleaves)

uni.C <- sort(unique(bambooleaves$Code))

ind <- 1

Data <- bambooleaves[bambooleaves$Code ==

uni.C[ind],]

x0 <- Data$x

y0 <- Data$y

Res1 <- adjdata(x0, y0, ub.np = 1000, times =

1.2, len.pro = 1/20)

x1 <- Res1$x

y1 <- Res1$y

x0.ini <- min(x1)

y0.ini <- min(y1)

theta.ini <- pi/4

a.ini <- 8.4

n1.ini <- seq(0.01, 0.1, by = 0.01)

n2.ini <- 1

ini.val <- list(x0.ini, y0.ini, theta.ini,

a.ini, n1.ini)

Res <- fitGE(GE, x = x1, y = y1, ini.val =

ini.val, m = 1, simpver = 2, nval = 1,

par.list = FALSE, stand.fig = TRUE, angle

= NULL, fig.opt = TRUE, np = 2000, control =

list(reltol = 1e-20, maxit = 20000))

RMSE0 <- sqrt(Res$RSS/Res$sample.size)

3. An example of fitting the height growth data of a species of

bamboo.

data(shoots)

attach(shoots)

ind <- 3

x1 <- x[Code == ind]

y1 <- y[Code == ind]

F IGURE 5 Leaf venation network (A) and the calculation of its
fractal dimension (B) for the leaf veins ofMichelia compressa
(Magnoliaceae). In panel (B), the box-countingmethodwas used to
calculate the leaf-vein fractal dimension. Here, δ represents the side
length of a square box;N is the number of square boxes that include at
least one pixel of leaf veins; the slope is the estimated fractal
dimension; 95%CI represents the 95% confidence interval of the
slope; r2 is the coefficient of determination; and n represents the
sample size used for the linear regression.

delta0 <- c(0.5, 1, 2, 5, 10, 20)

ini.val <- list(600, 25, 0, 40, delta0)

resu2 <- fitsigmoid(MLRFE, x = x1, y = y1,

ini.val = ini.val, simpver = NULL, fig.opt =

TRUE, control = list(reltol = 1e-20, maxit

= 20000))

4. An example of getting themeasure of the extent of a leaf’s bilateral

(a)symmetry.
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F IGURE 6 Examples of normal andmutant petal bases of Vinca major (A, B) and results of fitting their shapes using the Gielis equation (C, D). In
panels C andD, the gray curves represent the observed boundaries of the petal bases; the red curves represent the boundaries predicted by the
Gielis equation; RMSE is the root-mean-square error between the observed and predicted polar radii.

data(Neocinnamomum)

uni.C <- sort(unique(Neocinnamomum$Code))

ind <- 2

Data <- Neocinnamomum[Neocinnamomum$Code ==

uni.C[ind],]

x0 <- Data$x

y0 <- Data$y

Res1 <- adjdata(x0, y0, ub.np = 2000, len.pro

= 1/20)

x1 <- Res1$x

y1 <- Res1$y

Res2 <- bilat(x = x1, y = y1, time.interval

= 0.00045, peri.np = 500, n.loop = 30,

auto.search = TRUE, fd.opt = TRUE, frac.fig

= TRUE)

Res2$AR

Res2$SI

Res2$scan.area

Res2$scan.length

Res2$scan.area

Res2$scan.perimeter

Note: before using the ‘bilat’ function, we used the ‘adjdata’ function

to adjust the data points on the leaf boundary coordinates to strictly

follow a counterclockwise order. The ‘bilat’ function can obtain the

extent of leaf bilateral (a)symmetry (the area ratio of the left side to the

right side of a leaf lamina [AR] and the standardized index for bilateral

(a)symmetry [SI]) and other leaf measurements, including the leaf area,

length, width, and perimeter.

5. An example of calculating the fractal dimension of a leaf vein

network.

data(veins)

par(mar = c(5,5,2,2))

plot(veins$x, veins$y, cex = 0.01, asp = 1,

cex.lab = 1.5, cex.axis = 1.5, xlab

= expression(italic(x)), ylab =

expression(italic(y)))

fracdim(veins$x, veins$y)

Figure 3 shows additional fitted examples, and includes the bound-

ary coordinate data of a bamboo leaf, an avian egg, a ginkgo seed, a

vertical projection of the fruit of the golden rain tree (K. paniculata),

tree rings (in cross-sections) of the stem of a white spruce (P. glauca),

and a sea star. The gray curves represent the scanned (actual) bound-

aries, and the red curves represent the boundaries predicted by the

Gielis equation. The root-mean-square errors (RMSEs, which equal the

square-root of the quotient of the RSS and the sample size) between

the observed and predicted polar radii are also listed in the panels

of Figure 3. Figure 4 shows the application of the MLRFE in fitting

an ovate leaf of a species of Lauraceae, and the height versus time
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F IGURE 7 The aboveground architectural structure ofMyricaria prostrata in Pulan County, Tibet, China. Dr. Yongping Yang took the photo on
July 2, 2012.

F IGURE 8 An example of using the package ‘ggplot2’ to redraw
the results of fitting the boundary coordinate data of a bird egg. The
observed (black) and predicted (red) geometries (boundary
coordinates) predicted by the Gielis equation are shown here. The
partial comparison between the observed and predicted geometries of
the egg’s boundary is shown in the top-right inset subplot.

data of a growing bamboo shoot. The RMSEs presented in this case

represent the prediction errors between the observed and predicted

y-valuesbecause the rate equationwasnot expressed in thepolar coor-

dinate system. Figure 5 shows the calculation of the fractal dimension

of the leaf venation network of a species of Magnoliaceae based on

the box-counting method.23,24 The estimated fractal dimension is the

estimated slope of the straight line fitting the relationship between the

number of square boxes that include one leaf-vein pixel and the side

length of a box on a log-log scale (Figure 5B).

The parameters of data simulation and estimated parameters for

Figures 1 and 3–5 can be found in Appendix S1.

POTENTIAL USES IN ECOLOGICAL AND
EVOLUTIONARY RESEARCH

Prior studies have confirmed thatmany natural shapes, especially sym-

metrical shapes, can be expressed by the Gielis equation or its twin

version,9–16 which shows the feasibility of using the Gielis equation in

exploring ecological or evolutionary trajectories in the morphological

variation among closely related species or taxa, different individuals of

the same species (as in phenotyping), or changes attending ontogeny.

A recent study showed that a simplified version of the Gielis equa-

tion can describe the shapes of real bird eggs well.16 The estimated

value of the parameter controlling the symmetry of the curve is of

potential value for quantifying the intraspecific and interspecific vari-

ations in avian egg profiles. However, doing so requires the use of a

large sample for each species. (An exploration of this topic exceeds

the scope of the present work.) In addition to the egg-shape exam-

ple, the Gielis equation can depict the intraspecific variation in leaf

and flower geometries. We provide an example of the variation in the

shape of the petal base of Vinca major. The normal petal bases of this

plant are pentagonal (Figure 6A). However, quadrangular petal bases

also occasionally occur rarely (Figure 6B) (but less than 2% according

to a survey of 380 flowers of V. major, unpublished data). Neverthe-

less, the two types of petal bases both follow a simplified version of

the Gielis equation (Figure 6C,D) that is also valid in describing bird

egg shapes.16 The ‘fracdim’ function can be used to calculate the fractal

dimension of leaf veins, but it can also be used to examine the planar

projections of objects with branched structures, for example, arteries,

veins, and trees. Figure 7 shows a plant species growing in the alpine

regions of Tibet that has evolved a low spreading growth form, possi-

bly as an adaptation to very strong winds and low temperatures. The

aboveground architecture (in top view) of the plant is comparable with
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those of closely related specieswith upright architectures (inside view)

using their fractal dimensions calculated by the ‘fracdim’ function of

‘biogeom’.

In addition to describing the egg shapes of birds and reptiles, ‘bio-

geom’ can also describe the eggs of some insects, which can have large

deformations from axial symmetry. Therefore, efforts to increase the

deformation versatility of the Gielis equation are worth of attention.

From our recent study on simulating and fitting the cross-sections of a

species of square bamboo (Chimonobambusa utilis),43 it appears to be at

least technically feasible to combine a deformation function with one

or more equation parameter(s).

Finally, the ‘biogeom’ package uses the base graphics system (from

the ‘graphics’ package) to produce graphical outputs that are tradi-

tional S-like graphics.44 In comparison with the currently popular R

package ‘ggplot2’, which uses a perfect set of the grammar of graph-

ics and statistical models to conveniently visualize data and embodies

a deep philosophy of visualization,45 the base graphics system has

its drawbacks since it lacks these features. However, to reduce the

dependencies of ‘biogeom’ on other R packages and the frequency of

software updates needed, we suggest using the base graphics system

instead of the ‘ggplot2’ grammar of the graphics system in our package.

Fortunately, the graphical output is only a visualization of the values

returnedby the functions in ‘biogeom’, and the user can easily use these

values and the functions in ‘ggplot2’ to redraw the graphics. In Figure 8,

we illustrate an example of using the package ‘ggplot2’ to redraw the

results of fitting the boundary coordinate data of a bird egg.

CONCLUSIONS

TheRpackage ‘biogeom’ provides several novel ready-to-use functions

to simulate and fit natural geometries. It can be used to quantify the

morphological characteristics of eggs, fruits, seeds, and other organic

objects that are apparently or approximately symmetrical and is a

promising tool for exploring intra- and interspecific variation in shape

and obtaining relevant quantitative trait information for evolutionary

andecological studies. In particular, the evolutionary trajectories of dif-

ferent organisms canbe reflectedby theirmorphological (dis)similarity.

The influence of external factors (e.g., temperature, light intensity, and

humidity) can also lead to a variation in biological geometries due to

the morphological differences among organs and tissues. To a certain

degree, the R package ‘biogeom’ can analyze the similarity and varia-

tion among organismal shapes using a universal equation. In addition,

‘biogeom’ provides candidate sigmoid growth equations, and a func-

tion to produce an index of the extent of leaf bilateral (a)symmetry.

Basic botanical information on leaf area, length, width, and perimeter

can also be provided by this package, which means that it is suitable

for calculating leaf-shape indices, such as the leaf roundness index, leaf

dissection index, and leaf ellipticalness index.14
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