|
Record |
Links |
|
Author |
Sun, C.; Liao, X.; Peng, H.; Zhang, C.; Van Tendeloo, G.; Zhao, Y.; Wu, J. |
|
|
Title |
Interfacial gliding-driven lattice oxygen release in layered cathodes |
Type |
A1 Journal article |
|
Year |
2022 |
Publication |
Cell reports physical science |
Abbreviated Journal |
|
|
|
Volume |
3 |
Issue |
1 |
Pages |
|
|
|
Keywords |
A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT) |
|
|
Abstract |
The oxygen release of layered cathodes causes many battery failures, but the underlying mechanism in an actual working cathode is still elusive as it involves secondary agglomerates that introduce complicated boundary structures. Here, we report a general structure instability on the mismatch boundaries driven by interfacial gliding-it introduces a shear stress causing a distortion of the metal-oxygen octahedra framework that reduces its kinetic stability. The migration of cations and diffusion of oxygen vacancies continue to degrade the whole particle from the boundary to the interior, followed by the formation of nano-sized cracks on the fast-degrading interfaces. This work reveals a robust chemical and mechanical interplay on the oxygen release inherent to the intergranular boundaries of layered cathodes. It also suggests that radially patterned columnar grains with low-angle planar boundaries would be an efficient approach to mitigate the boundary oxygen release. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000745659500012 |
Publication Date |
2021-12-20 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
|
Times cited |
|
Open Access |
OpenAccess |
|
|
Notes |
|
Approved |
Most recent IF: NA |
|
|
Call Number |
UA @ admin @ c:irua:186420 |
Serial |
6961 |
|
Permanent link to this record |