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20 Abstract 

21 Recently a universal model, called NRGE, was proposed to describe the shape of avian 

22 eggs. It can simulate the shape of spherical, ellipsoidal, ovoidal, and pyriform eggs. 

23 However, the predictions of NRGE were not tested against actual data. Here, we tested 

24 the validity of NRGE by fitting actual data of egg shapes, and compared it with the 

25 predictions of a simpler model for egg shape (denoted as SGE). The eggs of nine bird 

26 species were sampled for this purpose. NRGE was found to fit the empirical data of egg 

27 shape well, but it did not define the egg length axis (i.e., symmetric axis) which 

28 significantly affected the prediction accuracy. The egg length axis in NRGE is defined 

29 as the maximum distance between two points on the scanned perimeter of the egg’s 

30 shape. In contrast, SGE fitted the empirical data better, and had a smaller root-mean-

31 square error than NRGE for each of the nine eggs. Based on its mathematical simplicity 

32 and goodness of fit, SGE appears to be a reliable and useful model for egg shape.

33
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35 Introduction

36

37 Bird eggs manifest excellent axial symmetry, i.e., their shapes are perfectly symmetric 

38 along a well-defined length axis. Yet, avian eggs are asymmetric along their maximum 

39 width axis, which has attracted the attention of many scientists interested in modelling 

40 natural shape.1-3 For example, Stoddard et al.1 proposed two biologically relevant 

41 parameters, asymmetry and ellipticity, to quantify diverse egg shapes. The concept of 

42 asymmetry is a relative measure for the extent of the deviation from a circle or an ellipse 

43 in one direction since all eggs share bilateral symmetry in their top-down cross-section. 

44 In a recent publication,2 a universal equation (denoted henceforth as NRGE) for 

45 simulating different shapes of eggs was proposed by Narushin, Romanov and Griffin 

46 who substantially extended Hügelschäffer’s formula to render their new equation to 

47 describe the shape of pyriform eggs:

48
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(1)

49

50 where x and y represent the abscissa and ordinate of the egg shape in the Euclidean 

51 coordinate system, L represents the egg’s length, B represents the egg’s maximum 

52 width, w is (L–W) / 2k, where k is a positive number to be estimated, and DL/4 is the 

53 egg’s diameter at the distance of L/4 from the tip of the egg.

54

55 Narushin et al.2 simulated different egg shapes by adjusting the numerical value 

56 of parameter w, and compared the simulations with seven actual egg shapes. In this 
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57 important and seminal work, NRGE is transformed to deal with the basic ovoid forms 

58 (i.e., spherical, ellipsoidal, and Hügelschäffer’s ovoid), which can be deemed as a 

59 ‘mathematical evolution’ from the simplest shape (i.e., sphere) to the most complex 

60 (i.e., Hügelschäffer’s ovoid). However, they did not provide the results of fitting the 

61 empirical data of egg shape. They only demonstrated the feasibility of NRGE in 

62 depicting the diversity of egg shape by simulation. Thus, there is a need to test whether 

63 NRGE can effectively approximate actual egg shapes and to evaluate the goodness-of-

64 fit. In addition, although Eq. (1) is described as being ‘universal’ in simulating the shape 

65 of avian eggs, its applied scope is limited to a certain class of shapes. 

66 It is also necessary to consider alternative equations for the purpose of simulating 

67 egg shape, as for example the equation proposed by Johan Gielis,4 which describes 

68 many organic shapes especially symmetric ones:

69

, 
1

2 3
1

φ cos φ sin φ
4 4

n
n n

m m
r a k


             

(2)

70

71 where r is the polar radius at the polar angle φ, where a, k, n1, n2 and n3 are parameters 

72 to be estimated, and m is a positive integer, which determines the number of angles of 

73 the curve generated by Eq. (2) within [0, 2π]. This is a generalization of the Pythagorean 

74 Theorem and of the superellipse equation.4 When n2 = n3, Eq. (2) produces bilaterally 

75 symmetric shapes, and when n2 = n3, k = 1 and m > 1, Eq. (2) produces radial symmetric 

76 shapes. Many classical geometries such as circles, ellipses, squares, rectangles, 

77 diamonds, triangles, and pentagrams can be generated by Eq. (2). The simplified Gielis 

78 equation has been used to successfully fit the empirical outline data of bamboo leaves, 

79 sea stars, seeds, and tree rings.5-9 

80 Prior work on a variety of organic shapes (e.g., the seeds of Ginkgo biloba, the 

81 Maidenhair tree)9 indicates that Eq. (2) can be simplified further when dealing with 

82 objects manifesting near perfect bilateral symmetry (e.g., m = 1), i.e.,
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83

,       1
2 2

1

φ cos φ 4 sin φ 4
n

n n

r a


  (3)

84

85 which has only three parameters, a, n1, and n2. Note that the abscissa and ordinate of 

86 egg shape in the Euclidean coordinate system can be calculated as x = r cos φ and y = 

87 r sin φ, respectively. Eq. (3) is denoted as SGE (simplified Gielis equation) hereafter. 

88

89 Here, we compare the ability of NRGE and SGE to fit the empirical data of the 

90 egg shapes of nine species of birds spanning the full range of egg shapes to determine 

91 which of these two models is more successful at fitting the empirical data. 

92

93 Data Acquisition and Parameter Estimation

94

95 We used the shapes of seven eggs appearing in Ref. 2, and added two additional egg 

96 shapes (see Fig. 1 for details). The protocols proposed by Su et al.10 were subsequently 

97 used to extract the planar coordinates of these shapes to obtain 2000–3000 data points 

98 for each the perimeter of the egg’s shape. 

99

100 Because the planar coordinates of the scanned images usually deviated from those 

101 generated by SGE (Fig. 2), three additional location parameters were introduced, i.e., 

102 x0, y0, and θ,5-9 where (x0, y0) represents the coordinates of the polar point of SGE in the 

103 Euclidean coordinate system, and θ represents the angle between the scanned egg length 

104 axis (i.e., the major axis) and the x-axis. The value of θ was defined as a positve number 

105 when the major axis rotated counterclockwise from the x-axis, and it was defined as a 

106 negative number when the major axis rotated clockwise from the x-axis. To estimate 

107 the parameters of SGE, we minimized the residual sum of squares between the actual 

108 distances from the polar point to the data points on the scanned the perimeter of the 

109 egg’s shape and the distances from the polar point to the data points on the predicted 

110 perimeter of the egg’s shape using the Nelder-Mead optimization method.11
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111

112 Due to the complexity of the mathematical structure of NRGE, the Nelder-Mead 

113 optimization method failed to estimate the parameters. Because three out of four 

114 parameters of NRGE have clear biological and geometric meanings (i.e., L, B and DL/4), 

115 their values could be estimated by means of numerical calculation. After obtaining the 

116 numerical values of the three parameters, the optimization method was used to estimate 

117 w. Because of the failure of using the optimization method to estimate the major axis 

118 and model parameters of NRGE, it was difficult to define the egg length axis, although 

119 it is essential for calculating L, B and DL/4. For this reason, two methods were used to 

120 obtain the major axis: the maximum distance method, and the SGE major axis 

121 approximation method. In the first method, the straight line through two points forming 

122 the maximum distance on the perimeter of the egg’s shape is defined as the major axis. 

123 In the second method, the major axis predicted by SGE was directly used as the major 

124 axis of NRGE, because SGE balances the goodness-of-fit of the model and the bilateral 

125 symmetry of the curve. Because the direction from the egg base to the egg tip predicted 

126 by SGE is the reverse of that predicted by NRGE, the angle between the major axis of 

127 NRGE and the x-axis is equal to the sum of the estimated θ of SGE and π.

128

129 Once the major axis is established, the distance of the major axis can be calculated 

130 as the estimate of L. Using the maximum distance method, L equals the maximum 

131 distance. Using the SGE major axis approximation method, L may be slightly smaller 

132 than the true distance. After rotating the major axis to make it overlap with the x-axis, 

133 a large number of equidistant rectangles can be used12 (e.g., 2000) from the egg base to 

134 egg tip to intersect the perimeter of the egg’s shape. This methodology makes it easy to 

135 obtain the maximum egg width (i.e., B) and DL/4. The residual sum of squares (RSS) 

136 between the observed and predicted y values can be minimized using the optimization 

137 method to estimate w. Despite the complex structure of NRGE [see Eq. (1)], the 

138 optimization method for estimating the remaining parameter w becomes feasible after 

139 the other three parameters were numerically estimated. 

140
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141 The root-mean-square error (RMSE) between the observed and predicted ordinate 

142 coordinates, and , respectively, was used to determine the goodness-of-fit of any 𝑦𝑖 𝑦𝑖
143 of the two models:

144

,RMSE = ∑𝑁𝑖 = 1
(𝑦𝑖― 𝑦𝑖)2 𝑁 (4)

145

146 where the subscript i represent the ith data point on the egg’s edge, and N represents 

147 the number of data points on the egg’s edge. As a rule of thumb, a ≤ 0.05 RMSE 

148 indicates a satisfying goodness-of-fit of a model, thereby validating a model’s ability 

149 to fit the data. We compared NRGE with SGE based on their RMSE values. If SGE has 

150 a smaller RMSE, it can be concluded that SGE is superior in its goodness-of-fit and its 

151 model simplicity. 

152     The software R (version 4.1.2)13 was used to carry out all calculations and data 

153 fitting.

154

155 Results and Discussion

156

157 Analyses indicated that the RMSE values obtained using SGE are smaller than 0.05 for 

158 each of the nine egg shapes investigated (Fig. 3 and Table S1 in online supplementary 

159 material). There are two methods to define the major axis of NRGE (i.e., the maximum 

160 distance method and the SGE major axis approximation method) that can be used to 

161 numerically calculate the model’s parameters. The RMSE of NRGE based on the first 

162 method was higher than the RMSE of NRGE based on the second method (Figs. 4 and 

163 5; Tables S2 and S3). Therefore, the SGE major axis approximate method is better to 

164 find the major axis of the egg shape generated by NRGE, which can improve the 

165 goodness-of-fit. However, the two methods are only for the use of NRGE. The RMSE 

166 values of the two methods for NRGE were both higher than the RMSE values obtained 

167 using SGE for each of the nine egg shapes (Tables S2 and S3 vs. Table S1). The 
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168 maximum distance method obtained a large prediction error for the egg of Uria aalge 

169 (i.e., RMSE = 0.1821), whereas RMSE = 0.0335 using the SGE major axis 

170 approximation method. These results support the validity of NRGE in light of empirical 

171 data for egg shape once the major axis was properly identified. However, as can be 

172 seen, the selection of the major axis relies on the predictions of SGE. It should be noted 

173 that we were unable to directly find the optimal major axis of NRGE based on the 

174 optimization method due to the complexity of model’s structure. To directly use the 

175 straight line associated with the maximum distance between two points on an egg-edge 

176 was infeasible for several egg shapes. In addition, we found that the estimates of 

177 parameter w in NRGE obtained negative numbers for several eggs (see Tables S2 and 

178 S3), which was inconsistent with how w was originally defined in NRGE (i.e., k is 

179 considered to be a positive number to be estimated). 2 

180

181 The NRGE has revealed a mathematical ‘evolution’ from the simplest shape (i.e., 

182 sphere) to the most complex (i.e., Hügelschäffer’s ovoid), and the predicted curves 

183 exhibited a good axi-symmetry and covered the ovoid geometries of interest. Given the 

184 morphological similarity between reptilian eggs and bird eggs, NRGE also applies to 

185 both types, and it is likely applicable for describing the shape of some insect eggs. 

186 However, although SGE has fewer parameters, its goodness-of-fit is better than that of 

187 NRGE. In general, the fewer the number of parameters, the more concise a model and 

188 the greater the ‘close-to-linear’ behavior in the relevant nonlinear regression, i.e., the 

189 greater the convergence in the parameter space using fewer data points.14-16 In our 

190 study, Akaike information criteria or Bayesian information criteria (which consider the 

191 trade-off between the goodness-of-fit and the complexity of model’s structure17 ) were 

192 not used to compare SGE with NRGE, because the mathematical simplicity of SGE 

193 with fewer parameters clearly obtains smaller RMSE values than NRGE. Overall, from 

194 the viewpoint of the conciseness of model structure and goodness-of-fit, SGE offers 

195 advantages over NRGE. It is also necessary to point out that the purported universality 
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196 of NRGE is constrained regarding its range of egg geometries. By relaxing the 

197 limitation for m = 1 in Eq. (3), the four-parameter SGE with the same number of 

198 parameters as NRGE can describe a broader range of geometries including triangles, 

199 rectangles, pentagrams, and others, i.e., the ‘universality’ of SGE is greater than that of 

200 NRGE. 

201 It is useful to point out that it is not feasible to use a one-parameter model to 

202 adequately describe the shape of eggs. Indeed, a two-parameter SGE was required to 

203 describe the shape of bamboo leaves, i.e.,5,6,18

204

,       11

φ cos φ 4 sin φ 4
n

r a


  (5)

205

206 where the parameters a and n1 were empirically found to represent leaf length and width, 

207 which implies that Eq. (5) can be considered as a function of leaf length and width.10, 

208 18 Although Eq. (5) was shown to be valid for fitting the empirical data of bamboo 

209 leaves,5,6,18 it cannot be extended to other ovate or lanceolate leaf shapes.18 We explored 

210 the use of Eq. (5) to fit the actual data of the egg shapes shown in Fig. 1, but failed to 

211 confirm its universality across all of the nine egg shapes (results not shown because of 

212 the space limitations). However, a two-parameter SGE can reflect a limited spectrum 

213 of egg shapes by setting n2 to be a constant (as done in Eq. [5]) whose numerical value 

214 relies on the morphological characteristics of the class of egg shapes of interest. 

215 However, it is clear that such a two-parameter SGE cannot serve as a universal formula 

216 for egg shape. In fact, the length and width of a planar projection of a biological object 

217 with a certain intra-variation in morphology can estimate the area of the projection, by 

218 multiplying the product of length and width with a parameter to be estimated.19, 20 This 

219 suggests to us that the parameter can be potentially regarded as an index to quantify 

220 shape by checking the extent of deviation from a rectangle or an ellipse.21 However, 

221 this parameter does not reflect the extent of symmetry for the shape of interest.1 

222 Therefore, any viable ‘universal’ model for egg shape must consider the extent of the 
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223 deviation from a given geometry (e.g., an ellipse) and that of symmetry or asymmetry. 

224 In that case, a truly universal model for egg shape requires three or more parameters.

225

226 Conclusion

227

228 The validity of the Narushin-Romanov-Griffin equation (NRGE) with four parameters 

229 was confirmed for fitting the empirical data of nine species of bird eggs representing 

230 the full spectrum of avian egg shapes. However, the prediction accuracy of NRGE 

231 depends on whether the major axis (i.e., the egg length axis) can be correctly 

232 determined. Because of the complexity of the NRGE model, the parameters of NRGE 

233 cannot be directly estimated using optimization methods. A simplified Gielis equation 

234 with three parameters (SGE) was proposed to describe the shape of avian eggs, and its 

235 validity was confirmed. Specifically, the goodness-of-fit of SGE is greater than that of 

236 NRGE for each of the nine egg shapes. Given the conciseness of SGE model and its 

237 lower root-mean-square errors relative to NRGE, SGE is advocated as a better 

238 ‘universal’ model for egg shape. In addition, if we add an additional parameter m in 

239 SGE, it can generate a broader spectrum of geometries than NRGE. After using the 

240 predicted major axis by SGE, the prediction error of NRGE was greatly decreased 

241 relative to that using the straight line identified by the maximum distance between two 

242 points on the perimeter of the egg’s shape as the major axis. The future application of 

243 NRGE would benefit by using SGE to predict the major axis. Although NRGE and SGE 

244 both provide feasible tools for describing and fitting the actual shape of avian (and non-

245 avian) eggs, SGE is more concise and more flexible in its curve-fitting capacity. 

246
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319 Figure legends

320 Figure 1. Nine eggs used to assess modeling capability. The egg of Gallus gullus was 

321 photographed by Peijian Shi; a common murre egg came from the website 

322 (https://www.penbaypilot.com/article/kristen-lindquist-everyday-miracle-bird-

323 egg/117278); the others came from the websites reported in Ref. 2. The actual size of 

324 each was calculated using the scale in the corresponding original image.

325 Figure 2. Comparison between the coordinates of a scanned egg shape with those of 

326 the egg shape generated by the simplified Gielis equation. The polar coordinates of the 

327 scanned egg shape are (–1, 1) and θ = –π/4. The major axis (red straight line) of the 

328 scanned egg shape can be considered as a result of a straight line on the x-axis rotating 

329 clockwise π/4.

330 Figure 3. Comparison between the scanned egg shape and that predicted by the 

331 simplified Gielis equation (SGE) with three parameters to the nine egg examples. 

332 RMSE represents the root-mean-square error; the gray curve is the scanned egg shape 

333 (i.e., actual egg’s shape); the red curve is the predicted egg shape by the model.

334 Figure 4. Comparison between the scanned egg shape and that predicted by the 

335 Narushi-Romanov-Griffin equation (NRGE) with four parameters, based on the 

336 maximum distance method, to the nine egg examples. RMSE represents the root-mean-

337 square error; the gray curve is the scanned egg shape (i.e., actual egg shape); the red 

338 curve is the predicted egg shape by the model.

339 Figure 5. Comparison between the scanned egg shape and that predicted by the 

340 Narushi-Romanov-Griffin equation (NRGE) with four parameters, based on the SGE 

341 major axis approximation method, to the nine egg examples. RMSE represents the root-

342 mean-square error; the gray curve is the scanned egg shape (i.e., actual egg shape); the 

343 red curve is the predicted egg shape by the model.

344
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Table S1. Fitted results using the simplified Gielis equation (SGE) to the nine eggs

Species x0 y0 θ a n1 n2 Length Width Area RSS N

Strix uralensis 19.0838 19.0105 3.8352 1.5836 2.2409 6.6471 4.8505 4.2351 16.0189 0.0217 2996

Dromaius novaehollandiae 44.9468 42.5071 3.9444 0.8104 0.5398 6.4232 14.9470 9.5761 108.9956 1.9919 2999

Turdus philomelos 9.7020 9.6087 3.9332 0.7548 5.2122 17.0839 2.8212 2.1175 4.5517 0.0290 2075

Gallus gallus 29.5917 25.7853 6.2615 1.9101 2.0557 7.9118 7.0920 5.7293 31.8526 0.2183 2999

Pandion haliaetus 22.0227 21.4504 3.9467 1.5644 2.8869 11.8125 6.6750 4.9101 25.2994 0.2261 2990

Uria aalge 30.6614 23.9197 0.0096 1.3204 4.5965 23.0556 7.7560 4.7776 28.3091 0.5147 2997

Uria lomvia 26.4530 25.4271 3.9511 1.6239 8.6162 38.2804 8.5816 5.3748 34.3207 0.7850 2999

Gallinago media 14.7791 14.7885 3.9306 1.1246 14.8388 49.3067 4.5062 3.1801 10.5849 0.1976 2999

Aptenodytes patagonicus 35.1851 35.6391 3.9365 2.5630 8.5660 33.0040 11.4956 7.8058 66.9549 1.4039 2997

Page 20 of 22

http://www.nyas.org/forthcoming

Annals of the New York Academy of Sciences

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46



unedited manuscript

Table S2. Fitted results using the Narushi-Romanov-Griffin equation (NRGE) based on the maximum distance method to the nine eggs

Species θ L B w DL/4 Length Width Area RSS N

Strix uralensis 0.7286 4.8523 4.2315 -0.0227 3.6050 4.8523 4.2315 16.0189 2.6885 2996

Dromaius novaehollandiae 0.8088 14.9473 9.5693 -1.1107 8.1660 14.9473 9.5693 108.9956 24.6551 2999

Turdus philomelos 0.7387 2.8235 2.1191 0.0160 1.6509 2.8235 2.1191 4.5517 2.8735 2075

Gallus gallus 0.0215 7.0924 5.7284 -0.1211 5.0786 7.0924 5.7284 31.8526 13.6214 2999

Pandion haliaetus 0.8433 6.6789 4.9097 0.0136 3.9787 6.6789 4.9097 25.2994 9.1708 2990

Uria aalge 3.1301 7.7560 4.7714 0.4136 3.6339 7.7560 4.7714 28.3091 99.3389 2997

Uria lomvia 0.8151 8.5818 5.3736 0.4044 3.7727 8.5818 5.3736 34.3207 2.8120 2999

Gallinago media 0.7781 4.5062 3.1799 0.1242 2.2262 4.5062 3.1799 10.5849 2.5102 2999

Aptenodytes patagonicus 0.8023 11.4959 7.8037 0.4571 5.5542 11.4959 7.8037 66.9549 8.3699 2997

* Note: Here θ was estimated to be the angle between the straight line associated with the maximum distance between two points on the egg 

edge and the x-axis.
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Table S3. Fitted results using the Narushi-Romanov-Griffin equation (NRGE) based on the SGE major axis approximation method to the nine 

eggs

Species θ L B w DL/4 Length Width Area RSS N

Strix uralensis 6.9767 4.8505 4.2337 -0.0095 3.5993 4.8505 4.2337 16.0189 1.1362 2996

Dromaius novaehollandiae 7.0860 14.9470 9.5685 -1.0963 8.1588 14.9470 9.5685 108.9956 27.3804 2999

Turdus philomelos 7.0748 2.8212 2.1166 0.0369 1.6498 2.8212 2.1166 4.5517 0.3257 2075

Gallus gallus 9.4031 7.0920 5.7291 0.0802 4.8449 7.0920 5.7291 31.8526 3.5727 2999

Pandion haliaetus 7.0883 6.6750 4.9082 0.0365 3.9757 6.6750 4.9082 25.2994 1.8499 2990

Uria aalge 3.1512 7.7560 4.7713 0.4008 3.6390 7.7560 4.7713 28.3091 3.3581 2997

Uria lomvia 7.0927 8.5816 5.3729 0.4057 3.7722 8.5816 5.3729 34.3207 2.2072 2999

Gallinago media 7.0721 4.5062 3.1798 0.1242 2.2291 4.5062 3.1798 10.5849 2.4286 2999

Aptenodytes patagonicus 7.0781 11.4956 7.8030 0.4449 5.5605 11.4956 7.8030 66.9549 12.4250 2997

* Note: Here θ is equal to the estimated θ of SGE + π.
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