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Abstract: Fibonacci numbers are a very popular subject in mathematics, culture and 

science.  A major open question is why the Ancient Greek overlooked this series, while 

they were very familiar with the golden mean and division in extreme and mean ratio. 

Furthermore, they could compute the square root of five to any precision using Theon’s 

ladder. This is based on tables built with side and diagonal numbers, and it is a very 

efficient method to compute roots of integers, methods of incredible simplicity and 

efficiency, which are little known even now to most of the experts. The biologist D’Arcy 

Wentworth Thompson showed that the same method could be used to generate the 

Fibonacci series, when a simple shift in the computation of the tables is used.  He argues, 

quite convincingly, that the Greek could not have overlooked this. Actually, the same 

method can be used to generate all possible regular phyllotaxis patterns. 
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FIBONACCI NUMBERS IN SCIENCE 

Fibonacci	numbers	are	a	very	popular	subject	of	research	and	recreation	and	
one	can	find	innumerable	articles	in	mathematics,	science,	architecture	and	the	
arts.	Especially	 in	 the	 latter	 fields	 they	have	achieved	an	almost	divine	status,	
because	 of	 the	 relation	 to	 the	 golden	mean.	 	 From	 a	 scientific	 point	 of	 view	
however,	one	has	to	be	very	cautious	 in	the	application	of	the	series	to	actual	
natural	or	cultural	phenomena.		For	example,	in	the	arrangement	of	leaves	the	
Fibonacci	numbers	 relate	 the	number	of	 spirals	going	 in	one	direction,	 to	 the	
number	of	spirals	 in	the	other.	 In	a	 large-scale	experiment	of	popular	science,	
with	over	600	sunflowers	only	3	out	of	4	of	the	parastichies	on	sunflowers	were	
direct	 Fibonacci	 numbers.	 The	 other	 1/4	 (i.e.	 25%)	 were	 approximate	 or	
modified	Fibonacci	and	Lucas	numbers,	derived	series,	or	irregular	(Swinton	et	
al.,	2016).	One	can	contrast	this	with	models	whose	applicability	is	100%.	For	
example,	 in	 square	 bamboos	 all	 possible	 cross	 sections	 can	 be	 described	
uniquely,	 with	 superellipses	 and	 supercircles	 or	 Lamé	 curves	 (Huang	 et	 al.,	
2020).			

The	French	mathematician	Gabriel	Lamé	(1795-1860)	did	extensive	work	on	
the	 recurrent	 series	 𝑢!"# =	𝑢!"$ +	𝑢!	 with	 initial	 conditions	 𝑢% = 0; 𝑢$ = 1,	
and	for	this	reason	it	was	known	as	the	Lamé	series	(Lucas,	1876).		Despite	the	
fact	that	various	mathematicians	had	worked	on	this	series,	 it	was	apparently	
only	in	1877	that	the	name	Fibonacci	was	linked	to	this	recurrent	series	(Lucas,	
1877).	 	 Lamé’s	work	with	 the	 series	was	 purely	mathematical,	 in	 contrast	 to	
superellipses,	 which	 he	 developed	 to	 deal	 with	 shapes	 of	 natural	 shapes,	 in	
particular	crystals.		Two	centuries	later	superellipses	are	used	to	model	leaves,	
seeds,	tree	rings	and	bamboo	stems.	While	they	turn	out	to	be	excellent	scientific	
models	for	a	large	class	of	natural	shapes	with	fourfold	symmetry,	one	would	not	
expect	 superellipses	 to	 achieve	 the	 same	 success	 rate	 with	 pentagonal	 or	
triangular	shapes.		In	the	very	same	way	Fibonacci	series	cannot	be	implemented	
as	the	ultimate	model	for	phyllotaxy,	or	for	understanding	ancient	architecture	
or	art.	

In	his	wonderful	book	On	Growth	and	Form	D’Arcy	Thompson	(1917)	deals	
with	application	of	geometry	in	the	growth	and	form	of	biological	objects,	linking	
certain	forms	to	findings	in	mathematics	and	mathematical	physics.		He	devotes	
a	full	chapter	to	phyllotaxis	and	relation	to	Fibonacci	numbers,	in	effect	taking	



 PHIBONACCI IN GREECE  

 

501 

away	the	magic	or	mysticism	surrounding	this	particular	series.	 	On	the	other	
hand,	Jean	(2009)	is	essential	reading	for	student	of	plant	phyllotaxis.	

Since	leaves	and	scales	on	pinecones	are	discrete	structures	one	should	look	
to	difference	equations,	polynomials	and	logarithmic	spirals	to	study	phyllotaxy	
(Gielis	 et	 al.,	 2020).	 	 For	 example,	 Chebyshev	 polynomials,	 Lucas	 𝐿!	 and	
Fibonacci	numbers	𝐹!	can	all	be	considered	as	special	cases	of	the	homogeneous	
linear	 second	 order	 difference	 equation	 with	 constant	 coefficients	
𝑢%; 	𝑢$; 	𝑢!"$ = 𝑎𝑢! + 𝑏𝑢!&$,	 for	 𝑛 ≤ 1.	 If	 𝑎	and	 𝑏	 are	 polynomials	 in	 𝑥,	 a	
sequence	of	polynomials	 is	generated.	 	 In	particular	 if	𝑎 = 2𝑥	and	𝑏 = −1,	we	
obtain	Chebyshev	polynomials.	They	are	of	the	first	kind	𝑇!	(𝑥)for	𝑢% = 1;	𝑢$ =
𝑥,	and	of	the	second	kind	𝑈!	(𝑥)	for	𝑢% = 1;	𝑢$ = 2𝑥.	Fibonacci	numbers	𝐹!	arise	
for	𝑎	 = 	𝑏	 = 	1;		𝑢% = 0;	𝑢$ = 1.	 	For	𝑎	 = 	𝑏	 = 	1;			𝑢% = 2;	𝑢$ = 1,	we	obtain	
Lucas	numbers	𝐿!.	Therefore,	if	in	Chebyshev	polynomials	𝑖 = √−1	is	used	with	
𝑥 = (

#
			the	results	are	Lucas	numbers	𝐿!	for	Chebyshev	polynomials	of	the	first	

kind	𝑇!,	and	Fibonacci	numbers	𝐹!	for	those	of	the	second	kind	𝑈!	(Gielis	et	al.,	
2017).	There	is	a	range	of	other	beautiful	connections	(Ricci,	2020).  		

The	true	origins	of	the	Fibonacci	series	are	shrouded	in	the	mists	of	time;	it	
was	known	well	before	Fibonacci	in	India	(Lucas,	1877;	Singh,	1985).			Since	this	
series	is	about	numbers,	an	obvious	question	arises:		Why	did	the	Ancient	Greeks,	
whose	contributions	in	mathematics	and	science	provide	for	the	foundations	of	
our	 current	 science,	 fail	 to	 come	 up	 with	 this	 series?	 They	 knew	 the	 golden	
section	and	had	a	great	interest	in	the	decagon,	the	pentagon	and	their	related	
solids.		Euclid	IV.	10	states	that	the	side	of	the	decagon	is	equal	(in	terms	of	the	

radius)	 to	 the	 Golden	 Mean	 =	 √*&$
#

= 	0,618…..	 	 Moreover,	 they	 had	 various	

arithmetical	methods	for	easy	computations	of	roots,	inherited	from	Egyptians	
and	Babylonians.		So,	why	did	they	fail	to	discover	the	Fibonacci	numbers?		

 

SIDE AND DIAGONAL TABLES 

It	is	a	question	that	D’Arcy	Thompson	asked	himself	almost	100	years	ago;	
and	answered	in	his	brilliant	style.	In	On	Growth	and	Form	D’Arcy	Thompson	has	
a	small	footnote	in	the	section	On	leaf	arrangement	or	phyllotaxis,	which	links	to	
a	paper	of	his	own,	in	the	journal	Mind	(D’Arcy	Thompson,	1928).		In	his	mind,	it	
is	simply	inconceivable	that	the	Greek	overlooked	this	series.	He	develops	some	
very	convincing	arguments	for	his	hypothesis	and	does	so	in	the	same	brilliant	
literary	style	as	in	his	book.		Now	D’Arcy	Thompson	was	not	just	some	biologist;	
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he	 translated	 the	Historia	Animalium	of	Aristotle	 in	1910,	and	before	 that,	he	
wrote	 A	 glossary	 of	 Greek	 birds	 on	 all	 birds	 found	 in	 Greek	 literature	 and	
writings.		D’Arcy	Thompson’s	father	was	a	professor	of	Greek.	

The	article	in	Mind	is	called	“Excess	and	defect:	or	the	little	more	and	the	little	
less”	and	he	starts	out	with	the	following	question	on	what	Aristotle	had	in	mind	
when	defining	a	number:	

“Aristotle	gives	us	the	following	statement	of	Plato's	concept	of	the	"genesis	
of	 number":	 Number	 is	 derived	 from	 Unity	 and	 the	 indeterminate	 dyad	
(Metaphysics	1081a,	15);	but	this	apparently	simple	statement	has	never	been	
satisfactorily	explained.	Though	we	do	our	best	to	collate	it	with	other	related	
passages	we	 are	 left	 in	 doubt	 in	 the	 end;	 there	 is	 confusion	 or	 contradiction	
somewhere,	which	no	man	has	found	his	way	through;	and	I	begin	to	think	that	
our	 first	 business	 is	 to	 enquire	what	 is	meant	 by	 "number"	 in	 this	 particular	
connection.	Aristotle's	statement	might	refer,	and	it	is	usually	supposed	to	refer,	
to	 the	 genesis	 of	 Number	 in	 its	 widest	 sense,	 to	 the	 genesis	 of	 the	 ordinary	
numbers	1,	2,	3	.	.	 .	from	one	and	from	one	another:	a	question	which	is	either	
simplicity	itself	or	a	transcendental	problem	of	extreme	subtlety.	This	particular	
process	 of	 generation	 has	 never	 been	 shown	 to	 be	 related	 to	 the	 so-called	
indeterminate	dyad	(ἀό𝜌𝜄𝜎𝜏𝜊𝜍		𝛿𝜐ά𝜍).		

On	the	other	hand,	arithmos	(ὁ	ἀριθµός)	may	be	used	here	 in	 its	technical	
sense,	meaning	 a	 surd	 or	 "irrational	 number,"	 especially	 √2;	 and	 the	 general	
problem	of	Number	may	never	have	been	in	question	at	all.	It	was	the	irrational	
number,	the	numerical	ratio	(if	any)	between	two	incommensurable	segments,	
which	was	a	constant	object	of	search,	whose	nature	at	a	number	was	continually	
in	 question,	 and	 whose	 genesis	 as	 a	 number	 cried	 aloud	 for	 explanation	 or	
justification.	 I	 am	 inclined	 to	 think	 that	 this	 restricted	 but	 vitally	 important	
problem	is	the	question	at	issue;	but	if	it	be	only	part	of	a	more	general	question,	
it	is	still	the	only	part	thereof,	which	seems	capable	of	explanation.	In	short,	if	we	
keep	to	this	restricted	definition	of	our	problem,	and	if	we	then	go	a	step	or	two	
farther	in	its	interpretation	than	Prof.	Taylor	has	gone,	we	come	to	a	very	simple	
understanding	 of	 what	 the	 One	 (τὸ	 ἔν)	 and	 the	 indeterminate	 dyad	
(ἀό𝜌𝜄𝜎𝜏𝜊𝜍		𝛿𝜐ά𝜍)	are;	and	of	how,	between	them	both,	such	a	"number"	as	√2	is	
generated.		

The	'	side	and	diagonal	numbers,'	as	Theon	and	Iamblichus	explain	them,	hark	
back	 to	 the	 all-important	 Theorem	 of	 Pythagoras,	 and	 to	 the	 simplest	 case	
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thereof	 where	 the	 right-angled	 triangle	 is	 also	 isosceles.	 By	 their	 means	 we	
'arithmetize'	this	construction,	and	for	certain	values	of	the	'side'	obtain	'rational	
values'	 for	 the	 corresponding	 diagonal;	 consequently,	 dividing	 the	 diagonal-
number	by	the	side-number,	we	obtain	an	approximation	to	or	a	'rational	value'	
for	 √2,	 the	 true	 ratio	 of	 diagonal	 to	 side.	 It	 is	 part	 of	 the	 great	 Pythagorean	
principle	of	letting	Mathematics	rest	on	an	arithmetical	basis.		

It	 is	 just	worth	mentioning	that	what	we	here	call	 the	diagonal	 is	called	 in	
Greek	the	diameter;	it	is	the	diagonal	of	the	completed	square	(or	parallelogram),	
and	the	diameter	of	the	circle	in	which	it	can	be	inscribed.		

The	 following	 is	 a	 table	 of	 the	 side	 and	 diagonal	 numbers	 (πλευρικοὶ	 καὶ	
διάµετρικοὶ	ἀριθµοί).	Proclus	gives	the	series	as	far	as	12,17,	and	adds:	

Sides	

(𝛑𝛌𝛆𝛖𝛒𝛂ί)	

Diagonals	

(ΔΙΆΜΕΤΡΟὶ)	

1	 1	

2	 3	

5	 7	

12	 17	

29	 41	

70	 99	

169	 239	

We	begin,	necessarily,	with	1,	as	the	origin	(ἀρχή)	of	both	series;	for,	as	Theon	
says,	Unity	is	the	first	principle	of	all	configurations,	and	consequently	there	is	in	
Unity	a	 ‘logos’	(λόγος)	both	of	diagonal	and	of	side.	 	 If	 the	side	of	the	triangle	
measures	 One,	 One	 must	 represent	 the	 diagonal	 also,	 as	 its	 nearest	 rational	
number	or	equivalent.	The	further	construction	of	the	table	may	be	described	in	
various	ways,	according	to	its	various	properties.	The	simplest	way,	perhaps,	is	
to	say	that	we	add	a	side-number	to	its	corresponding	diagonal	to	get	the	next	
side-number	(2	+	3	=	5);	and	a	side-number	to	its	immediate	predecessor	to	get	
the	next	diagonal	(5	+	2	=	7),	etc.	We	may	also	say	that	each	number,	whether	
side	or	diagonal,	is	equal	to	twice	its	immediate	predecessor	plus	the	one	before	
that	𝑠! = 2𝑠!&$ + 𝑠!&#,	etc………	
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……The	table	of	side	and	diagonal	numbers	has	many	other	properties.	For	
instance,	as	Proclus	tells	us,	the	sum	of	the	squares	of	two	adjacent	diagonals	=	
twice	 the	 sum	 of	 the	 squares	 on	 the	 two	 corresponding	 sides,	 e.g.		3# + 7# =
2(2# + 5#).		And,	in	Chapter	xxiii	he	shows,	following	Adrastus,	that	the	sum	of	
the	squares	of	'all'	the	diagonals	is	equal	to	twice	the	sum	of	the	squares	of	'	all'	
the	sides.		

As	 Prof.	 Taylor	 explains,	 this	 table	 is	 precisely	 equivalent	 to	what,	 in	 our	
arithmetic,	we	call	a	Continued	Fraction,	viz.,		

1 +
1

2 + 1

2 + 1
2 + etc

	

But	 while	 we	 may	 illustrate	 our	 problem	 in	 this	 way,	 I	 do	 not	 think	 we	
simplify	 it.	 The	 continued	 fraction	 is	 an	 elegant	 arithmetical	 device,	 and	 the	
mathematician	calls	 it	a	simplified	expression;	but	 it	does	not	 follow	that	 it	 is	
simple	 to	 work	 with.	 Carry	 it	 on	 to	 ten	 or	 twenty	 terms,	 and	 it	 becomes	 a	
troublesome	matter	 to	 evaluate;	while	 the	Greek	 side-and-	diagonal	 numbers	
may	be	carried	as	far	as	we	please,	and	still	require	only	the	easiest	arithmetic.		

The	Greek	table	has	another	advantage	over	our	continued	fraction,	in	that	it	
obviously	 is	 just	 what	 it	 purports	 to	 be,	 namely	 an	 arithmetization	 of	 the	
corresponding	geometrical	figure.	We	have	merely	to	take	twice	the	square	of	a	
side	number	to	get,	approximately,	the	square	of	the	opposite	diagonal	number:	
and	when	we	proceed	 to	do	 so	 systematically,	we	discover	 three	 curious	and	
important	things.		

Firstly,	 the	successive	 results	are	closer	and	closer	approximations	 to	 that	
irrational	number	(viz.	√2)	which	 is	 the	 '	 limit,'	 the	un-attainable	 limit,	of	 the	
series.	Secondly,	the	approximations	are	alternately	on	one	side	or	the	other,	a	
little	more	or	a	little	less	than	the	number	at	which	we	aim;	and	herein	lies,	as	
Prof.	Taylor	explains,	the	technical	meaning	in	Greek	arithmetic	of	'excess	and	
defect’.		Thirdly,	the	striking	and	beautiful	fact	appears	that	this	'excess	or	defect'	
is	 always	 (in	 this	 case)	 capable	 of	 being	 expressed	 by	 a	 difference	 of	 1.	 The	
square	of	the	diagonal	number	{i.e.,	of	what	Socrates	calls	the	'	rational	diagonal')	
is	alternately	less	or	more	by	one	than	the	sum	of	the	squares	of	the	sides:		

2 ∙ 1# = 1# + 1,		2 ∙ 2# = 3# − 1,	2 ∙ 5# = 7# + 1,		2 ∙ 12# = 17# − 1						etc.	
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This	property	of	the	side-and-diagonal	series,	that	not	merely	is	the	square	of	
the	one	in	alternate	excess	and	defect	as	compared	with	twice	the	square	on	the	
other,	but	that	this	alternate	excess	and	defect	is	in	every	case	measured	by	one	
unit,	is	expressly	stated	by	Theon	and	by	Proclus.		

Similar	tables	can	be	constructed,	as	the	Greeks	well	knew,	for	other	square	
roots;	 and	 the	 way	 to	 construct	 them	 is	 in	 each	 case	 easy	 to	 discover.	 For	
instance,	the	table	for	√5	is	as	follows:	

	

1	 2	

4	 9	

17	 38	

72	 161	

etc	 	

According	to	which	table,		

5 ∙ 1# =	2# + 1;			5 ∙ 4# =	9# − 1;		5 ∙ 17# =	38# + 1; 	5 ∙ 72# =	161# − 1, etc	

The	table	for	√17,	to	which	allusion	is	made	in	the	Theaetetus,	would	run,	

	

1	 4	

8	 33	

65	 etc	

Hence	

17 ∙ 1# =	4# + 1;	17 ∙ 8# =	33# − 1	

Observe	how	the	'One'	comes	in,	to	'equalize'	all	of	these”.		

	

THEON’S LADDER 

Theon	 of	 Smyrna	 lived	 in	 the	 second	 century	 AD.	 	 The	 simple	method	 to	
compute	 roots,	 is	 known	 as	 Theon’s	 Ladder.	 	He	was	 a	 neo-Pythagorean	 and	
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wrote	a	book	on	the	necessary	mathematics	to	understand	Plato’s	writing.	At	the	
beginning	of	the	20th	century	there	was	a	great	interest	in	these	books,	and	‘Prof.	
Taylor’	referred	to	above,	was	one	of	the	leading	authorities	(Taylor,	1926a,b).	
D’Arcy	Thompson’s	article	was	inspired	by	his	earlier	articles	and	book.			

FIGURE	1	 SHOWS	 THE	SPIRAL	 OF	THEODORUS,	 THE	 GEOMETRIC	 CONSTRUCTION	 USING	
RECTANGULAR	 TRIANGLES,	 OF	 WHICH	 ONE	 SIDE	 IS	 EQUAL	 TO	 1.	 THEODORUS	 OF	 CYRENE	
(CA.	466–399	B.C.)	 IS	THE	TEACHER	OF	PLATO	AND	THEAETETUS	AND	IS	CREDITED	WITH	
THE	PROOF	OF	THE	IRRATIONALITY	OF	√𝑁, 			𝑁 = 2,3,5, … ,17		(GAUTSCHI,	2009).	ALSO,	IN	
THE	SPIRAL	THE	ONE	IS	A	CRUCIALLY	IMPORTANT	NUMBER,	AS	A	DEFINITION	TO	WHICH	ALL	
REST	MUST	BE	MEASURED.	IT	ALSO	SERVES	AS	EQUALIZER.	HE	MAY	HAVE	KNOWN	ALSO	OF	A	
DISCRETE	SPIRAL,	TODAY	NAMED	AFTER	HIM,	WHOSE	CONSTRUCTION	IS	BASED	ON	THE	SQUARE	
ROOTS	OF	THE	NUMBERS.	

	 	
Figure 1: The spiral of Theodorus of Cyrene 

It	shows	up	in	these	beautiful	methods	in	relation	to	the	square	roots	of	2,	5	
and	17.		The	side	and	diagonal	numbers	are	also	found	in	the	Online	Encyclopedia	
or	Integer	Numbers	OEIS	(Sloane	and	Plouffe,	1995).	The	side	numbers	in	the	
table	for	√2	are	A1000129,	the	Pell	numbers.		The	diagonal	numbers	for	√2	are	
A1001333,	 “the	 denominators	 of	 continued	 fractions	 for	 √2.”	 	 A001076	 and	
A001077	are	“the	numerators	and	denominators	of	continued	fractions	for	√5”,	
respectively,	and	they	are	also	the	side	and	diagonal	numbers	for	the	tables	of	
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√5.		But	since	it	works	for	square	roots	of	all	integers,	OEIS	should	be	updated	
with	this	knowledge.	

	

COMPUTING ROOTS OF INTEGERS 

About	the	tables,	D’Arcy	Thompson	writes	that	“the	way	to	construct	them	is	
in	each	case	easy	to	discover”.	This	is	indeed	the	case	and	can	in	fact	be	done	for	
any	integer,	not	only	the	ones	given	above.		The	general	rule	for	building	these	
tables	is	always	the	same.		The	numbers	𝑠!	denote	the	side	numbers	in	the	left	
column	 of	 the	 side-diagonal	 table,	 and	 the	 numbers	 𝑑!	 denote	 the	 diagonal	
numbers	in	the	right	column,	and	the	rule	is:		

s+ = B ∙ s+&$+d+&$	

d+ = B ∙ s++s+&$	

where	B	is	the	multiplier.	For	√2	it	is	1,	for	√5	it	is	2,	and	for	√17	it	is	4.		This	
corresponds	to	the	square	of	the	base	number	B	just	one	lower	than	the	number	
over	which	the	square	root	is	taken.		For	example,	5 = 	2# + 1		and	17 = 4# + 1,	
so	𝐵 = 1	and	𝐵 = 4		for	5	and	17,	respectively.	As	D’Arcy	Thompson	states,	this	
is	a	very	efficient	method	for	finding	roots,	easy	to	compute.			

If	we	expand	the	table	of	side	and	diagonal	numbers	to	eight	rows,	and	with	
the	ratio:	 ,!

,!"#
,	(i.e.	,$

,%
),	we	arrive	at	a	certain	number.	If	from	these	ratio’s	the	base	

number	B	is	subtracted,	i.e.		( ,!

,!"#
−𝑩),	we	arrive	at	the	required	roots.		

If	we	compute	now	the	difference	between	the	“real	value”	to	10	decimals	this	
gives	very	low	differences.		In	the	table	below	this	is	computer	when	the	side-
diagonal	table	has	8	and	10	rows.	

 TABLE ROWS √2 √5 √17 

COMPUTED VALUE CV  1,4142135624 2,2360679700 4,1231056256 

NUMBER 2 5 17 

!!

!!"#

  2,4142011834 4,2360679700 8,1231054863 

!!

!!"#

−𝐵  1,4142011834 2,2360679700 4,1231054863 
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DELTA (CV,	
!!

!!"#

− 𝐵) 8 0,0000123789 0,0000000075 0,0000001393 

DELTA (CV,	
!!

!!"#

− 𝐵) 10 0,0000003644 0,0000000000 0,0000000000 

This	 is	 very	 simple	 and	 general.	 It	 can	 be	 done	 for	 any	 integer.	 The	 base	
number	 (or	 first	 diagonal	 number)	 is	 simply	 the	 square	 root	 of	 the	 previous	
number.	Hence,	to	compute	if	the	√3	the	first	side	number	is	again	one,	but	the	
first	diagonal	number	is	√𝟐 =1,4142011834.			

The	procedure	was	probably	so	well-known	and	simple,	that	one	had	to	wait	
until	the	4th	century	before	Theon	wrote	it	down.		It	is	not	widely	known	in	our	
days,	but	it	must	have	been	known	to	a	larger	audience	one	century	ago,	with	
Taylor	and	Thompson.		Not	only	can	this	be	done	for	any	integer	but	also	for	(at	
least	in	principle)	for	any	real	number;	one	can	remove	the	comma	of	decimal	
system	and	put	it	back	after	the	operations.		Only	quite	recently,	it	was	shown	
that	Theon’s	original	method	is	naturally	generalized	for	the	calculation	of	any	
root,	 √𝑐

! ,	where			1	<	c		(Giberson	and	Osler,	2004;	Osler	et	al,	2008).		

 

THE FIBONACCI NUMBERS 

Remember	that	the	real	challenge	D’Arcy	Thompson	wants	to	address	is	that	
for	him	it	is	inconceivable	that	the	Greek	had	overlooked	the	Fibonacci	numbers.		
He	found	that	the	side-diagonal	tables	used	to	compute	roots,	also	directly	lead	
to	Fibonacci	numbers,	if	only	one	small	change	is	made	in	construction	the	tables.		
Again,	we	let	D’Arcy	Thompson	speak:			

“THERE	IS	STILL	ANOTHER	TABLE	WHICH	MAY	BE	JUST	AS	EASILY,	OR	INDEED	STILL	MORE	
EASILY	DERIVED	FROM	THE	FIRST,	AND	WHICH	IS	OF	VERY	GREAT	IMPORTANCE.	YET	THERE	IS	
NO	 ACCOUNT	 OF	 IT,	 NOR	 THE	 LEAST	 ALLUSION	 TO	 IT,	 IN	 ALL	 THE	 HISTORY	 OF	 GREEK	
MATHEMATICS;	AND	IT	IS	COMMONLY	BELIEVED	TO	HAVE	BEEN	FIRST	MADE	KNOWN	BY	THE	
GREAT	 ARITHMETICIAN	 WHO	 INTRODUCED	 THE	 ARABIC	 NUMERALS	 INTO	 THE	 CHRISTIAN	
WORLD.	WE	REMEMBER	THAT,	TO	FORM	OUR	TABLE	OF	SIDE	AND	DIAGONAL	NUMBERS,	WE	
ADDED	 EACH	 SIDE-NUMBER	 TO	 ITS	 OWN	 PREDECESSOR,	 THAT	 IS	 TO	 SAY,	 TO	 THE	 NUMBER	
STANDING	IMMEDIATELY	OVER	IT	IN	THE	TABLE,	AND	SO	WE	OBTAINED	THE	NEXT	DIAGONAL;	
THUS,	WE	ADD	5	TO	2	TO	GET	7,	IN	THE	FOLLOWING:	

	

1	 1	
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2	 3	

5	 7	

12	 etc	

But	suppose	that,	instead	of	adding	5	to	2,	to	make	7,	we	should	add	5	to	3,	
and	make	8:	it	is	just	as	easy,	and	seems	just	as	natural.	In	other	words,	suppose	
we	keep	on	adding	each	side-number	to	the	preceding	diagonal,	—that	is	to	say,	
to	the	number	which	stands	obliquely	instead	of	vertically	above.		

We	then	get	the	following	table:	

	

1	 1	

2	 3	

5	 8	

13	 21	

34	 55	

This	is	the	famous	series,	sometimes	called	the	Fibonacci	series,	supposed	to	
have	been	'discovered'	or	first	recorded	by	Leonardo	of	Pisa,	nicknamed	the	Son	
of	the	Buffalo,	or	"Fi	Bonacci".	This	series	has	more	points	of	interest	than	we	can	
even	 touch	 upon.	 It	 is	 the	 simplest	 of	 all	 additive	 series,	 for	 each	 number	 is	
merely	the	sum	of	its	two	predecessors.	It	has	no	longer	anything	to	do	with	sides	
or	diagonals,	and	indeed	we	need	no	longer	write	it	in	columns,	but	in	a	single	
series,	1,	1,	2,	3,	5,	8,	13,	21,	etc.		It	is	identical	with	the	simplest	of	all	continued	
fractions,		

1 +
1

1 + 1

1 + 1
1 + etc

	

Its	 successive	 pairs	 of	 numbers,	 or	 fractions,	 as	 *
-
, .
*
	etc.,	 are	 familiar	 to	

botanists,	 ever	 since	 Bravais	 showed	 them	 to	 express	 the	 number	 of	 spirals	
which	may	be	counted	to	right	and	to	left,	on	a	fir-cone	or	any	other	complicated	
inflorescence.		
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Here	 is	 another	 of	 the	 many	 curious	 properties	 of	 the	 series:	 	 0# + 2# =
2(1# + 1#);	1# + 3# = 2(1# + 2#);	 	1# + 5# = 2(2# + 3#);	2# + 8# = 2(3# + 5#),	
etc.	

But	the	main	property,	the	essential	characteristic,	of	these	pairs	of	numbers,	
or	fractions,	is	that	they	approximate	rapidly,	and	by	alternate	excess	and	defect,	

to	the	value	of	the	Golden	Mean,	that	is	to	say	to	the	value	of	√*&$
#

= 	0,618.		Thus,	

the	 successive	 fractions	 $
#
, #
-
, -
*
		 etc,	 expressed	 in	 decimals,	 are	 as	 follows:	

0.5; 0.66. . ;5…..	0.6190	.	.,	0.6176	.	.,	0.6181	.	.,	etc.		

The	 Golden	 Mean	 itself	 is,	 of	 course,	 only	 the	 numerical	 equivalent,	 the	
'arithmetisation,'	of	Euclid	II.	11;	where	we	are	shown	how	to	divide	a	 line	 in	
"extreme	 and	 mean	 ratio,"	 as	 a	 preliminary	 to	 the	 construction	 of	 a	 regular	
pentagon:	that	again	being	the	half-way	house	to	the	final	triumph,	perhaps	the	
ultimate	 aim,	 of	 Euclidian	 or	 Pythagorean	 geometry,	 the	 construction	 of	 the	
regular	dodecahedron,	Plato's	symbol	of	the	Cosmos	itself.		

……And	 in	 our	 table,	 any	 three	 consecutive	 numbers	may	 represent	 these	
three	 geometrical	 magnitudes,	 the	 square	 of	 the	 intermediate	 number	 being	
equivalent—approximately	 equivalent—to	 the	 product	 of	 the	 other	 two.	
Observe	that,	precisely	as	in	the	former	case,	the	approximation	gets	closer	and	
closer;	there	is	alternate	excess	and	defect;	and	(above	all)	the	"One"	is	needed	
in	every	case,	to	equate	the	terms,	or	remedy	the	defective	approximation.		

5# = 3 ∙ 8 + 1	;			8# = 5 ∙ 13 − 1;				13# = 8 ∙ 21 + 1;				ETC".	

Following	Thompson,	if	we	consider	how	tables	are	constructed,	there	is	only	
and	only	one	simple	difference,	namely	the	computation	of	𝑑!,	where	for	roots	
𝑑! = 𝑠! + 𝑠!&$,	but	to	get	Fibonacci	numbers	the	computation	of	𝑑!,	the	previous	
diagonal	number	𝑑!&$	 is	 used	 instead	of	 the	previous	 side	number	 𝑠!&$.		The	
table	below	shows	that	this	involves	only	one	cell	shifted	to	the	right:	
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These	 then	are	 the	arguments	set	 forth	 in	D’Arcy	Thompson’s	gem	article.		

The	Golden	Mean	=	√*&$
#

= 	0,618…..;	or	the	Section	(τοµή)	as	the	Greeks	called	

it,	 can	 be	 computed	 in	 easy	 way,	 to	 any	 degree	 of	 precision.	 For	 D’Arcy	
Thompson,	with	his	knowledge	of	Greek	language	and	his	insight	into	arithmetic	
and	geometry,	there	could	be	little	doubt:	

	“IT	IS	QUITE	INCONCEIVABLE	THAT	THE	GREEKS	SHOULD	HAVE	BEEN	UNACQUAINTED	WITH	
SO	SIMPLE,	SO	INTERESTING	AND	SO	IMPORTANT	A	SERIES;	SO	CLOSELY	CONNECTED	WITH,	SO	
SIMILAR	IN	ITS	PROPERTIES	TO,	THAT	TABLE	OF	SIDE	AND	DIAGONAL	NUMBERS	WHICH	THEY	
KNEW	 FAMILIARLY.	 BETWEEN	 THEM	 THEY	 "ARITHMETICIZE"	 WHAT	 IS	 ADMITTEDLY	 THE	
GREATEST	THEOREM,	AND	WHAT	IS	PROBABLY	THE	MOST	IMPORTANT	CONSTRUCTION,	IN	ALL	
GREEK	GEOMETRY.	BOTH	OF	THEM	HARK	BACK	TO	THEMES	WHICH	WERE	THE	CHIEF	TOPICS	OF	
DISCUSSION	 AMONG	 PYTHAGOREAN	 MATHEMATICIANS	 FROM	 THE	 DAYS	 OF	 THE	 MASTER	

HIMSELF;	AND	BOTH	ALIKE	ARE	BASED	ON	THE	ARITHMETIC	OF	FRACTIONS,	WITH	WHICH	THE	
EARLY	 EGYPTIAN	 MATHEMATICIANS,	 AND	 DOUBTLESS	 THE	 GREEK	 ALSO,	 WERE	 ESPECIALLY	
FAMILIAR.		Depend	upon	it,	the	series	which	has	its	limit	in	the	Golden	Mean	was	
just	as	familiar	to	them	as	that	other	series	whose	limit	is	√2.				

The	Golden	Mean	series	is	a	very	curious	one;	and	as	we	have	put	it,	it	is	only	
in	one,	and	that	the	simplest,	of	its	many	forms.		For	the	fact	is,	we	may	begin	it	
as	we	please,	with	1, 1,	or	1, 2,	or	1, 3,	or	any	two	numbers	whatsoever,	whole	or	
fractional,	and	in	the	end,	 it	comes	always	to	the	same	thing.	For	instance,	we	
may	have	the	series	
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	1, 5, 6, 11, 17, 28,45, 73, 118, 191, 309, etc.,		

which	only	agrees	with	the	former	in	that	each	number	is	the	sum	of	its	two	
predecessors:	 but	 as	 before,	 the	 fractions	 soon	 approximate	 closely	 to	 the	
Golden'	Mean;	 191/309 = 0.61812	 .	 .	 .	 ;	 and	 (as	 a	 consequence)	 309/191	 =
	1.618	.	.	.	approximately.	These	two	methods,	of	finding	the	value	of		√2	and	the	
value	 of	 the	 Golden	 Mean,	 are,	 be	 it	 remarked,	 by	 no	 means	 mere	 rough	
approximations,	but	they	actually	 lead,	more	easily	and	quickly	than	does	our	
modern	arithmetic,	 to	results	of	extreme	accuracy.	 In	 the	case	of	 the	side	and	
diagonal	numbers	we	need	go	no	farther	than	the	tenth	place	in	the	table	(as	can	
be	done	 in	 less	 than	two	minutes)	 to	get	a	 fraction	which	 is	equivalent	 to	 the	
value	of	√2	to	six	places	of	decimals!”	

The	 rules	of	 combining	side	and	diagonal	numbers	as	proposed	by	D’Arcy	
Thompson	 is	 simply	 addition	 of	 consecutive	 terms	 in	 a	 recurrent	 series.	 	 As	
Thompson	writes:	“For	the	fact	is,	we	may	begin	it	as	we	please,	with	1, 1,	or	1, 2,	
or	1, 3,	or	any	two	numbers	whatsoever,	whole	or	fractional,	and	in	the	end,	it	
comes	always	 to	 the	 same	 thing”.	 	 In	 the	 case	of	Fibonacci	numbers,	 the	 first	
diagonal	 number	 is	 1,	 but	 if	 the	 first	 diagonal	 number	 is	 3	 and	 the	 table	 is	
constructed	in	the	same	way	as	the	Fibonacci	numbers	(i.e.	𝑠! = 𝑠!&$ + 𝑑!&$	and	
𝑑! = 𝑑!&$ + 𝑠!)	then	one	obtains	the	Lucas	numbers.			

1	 3	

4	 7	

11	 18	

29	 47	

76	 123,			etc	

	

	

This	method	can	be	used	to	generate	the	phyllotactic	patterns	observed	in	
plants	(see	Zagórska-Marek,	1995;	Figure	1).	 	 	If	this	pair	is	(1,1)	or	(1,2)	one	
obtains	 the	 Fibonacci	 series,	 the	 so-called	 main	 sequence.	 	 In	 the	 accessory	
series,	the	first	side	number	is	1.		Then	the	first	pair	of	side	and	diagonal	numbers	
(1,3)	will	generate	the	numbers	Lucas	series	(1,3,4,7, . . ),	also	known	as	the	first	
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accessory	series.	 	The	second	and	third	accessory	series	starts	with	(1,4)	and	
(1,5).			

The	so-called	multijiugate	main	sequence	starts	with	(2,4)	leading	to	every	
term	 in	 the	Fibonacci	series	doubled,	namely	2 ∙ (1,1,2,3,5, . . ).	 In	 the	bijiugate	
first	accessory	series	the	sequence	is	double	of	the	Lucas	series	2 ∙ (1,3,4,7, . . ).	
And	so	on.	 	Finally,	the	lateral	sequences	start	with	the	side	number	2	and	for	
first	diagonal	number	odd	numbers	≥ 5	are	used	(using	3	generates	again	the	
Fibonacci	 series).	 	 	 This	 lateral	 sequence	 is	 also	 known	 as	 the	 anomalous	
phyllotaxis	(Jean,	2008).			

	

𝜱 IN ANCIENT GREECE AND THE GRAND VISION OF D’ARCY 

THOMPSON 

The	Phi	in	the	Phi-bonacci		of	the	title	is	the	𝛷	(Phi)	which	was	well	known	in	
Ancient	Greece,	e.g.	with	the	sculptor	Phidias.	The	Golden	Mean	or	the	Section	
was	well	known	to	mathematicians,	and	 they	could	compute	 it	 from	the	side-
diagonal	 table	 for	√5.	 	 In	D’Arcy	Thompson’s	opinion,	 they	hardly	could	have	
overlooked	tables,	which	lead	directly	to	𝛷.			

This	article	 is	also	a	 tribute	 to	Sir	D’Arcy	Thompson,	a	great	scientist.	 	His	
magnum	opus	On	Growth	and	Form	is	a	true	classic,	but	the	paper	in	Mind	also	
testifies	of	his	diligence	and	devotion	to	understand,	and	of	his	creative	mind.		
This	 stands	 in	 stark	 contrast	 to	 the	many	biologists	who	have	dismissed	 this	
wonderful	 book	 for	 a	 variety	 of	 reasons;	 not	 in	 the	 least	 because	 he	 did	 not	
discuss	genetics	or	Darwin.		But	that	was	exactly	the	point;	he	wrote	the	book	as	
a	counterweight	to	the	emphasis	of	biology	on	the	hereditary	aspects.		For	him	
the	shapes	that	are	found	in	nature	are	the	result	of	forces,	whatever	their	nature,	
and	the	interplay	between	the	organism	and	the	environment.			

This	 is	what	the	natural	sciences	and	natural	philosophy,	 from	the	Ancient	
Greek	up	to	Newton,	are	all	about	a	certain	sense	his	vision	was	grander	than	
Darwin’s,	since	Charles	Darwin	only	dealt	with	the	 living.	 	 In	his	book,	D’Arcy	
Thompson	also	characterized	himself	when	writing:	“The	search	for	differences	
or	 fundamental	 contrasts	between	 the	phenomena	of	 organic	 or	 inorganic,	 of	
animate	or	inanimate	things,	has	occupied	many	men’s	minds,	while	the	search	
for	community	of	principles	or	essential	similitudes	has	been	pursued	by	few”.				
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He	was	also	very	knowledgeable	about	Greek	science	and	literature,	like	many	
learned	men	of	the	past	(Thompson,	1929b).	

His	book	is	really	about	this	grand	vision:	“So	the	living	and	the	dead,	things	
animate	and	inanimate,	we	dwellers	in	the	world	and	the	world	in	which	we	dwell	
-	 	πάντα γα μὰν τὰ γιγνωσκόμενα -	 are	 bound	 alike	 by	 physical	 and	
mathematical	law”.		The	Greek	translates	as	“Everything	we	can	know”,	living	and	
non-living.			
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