toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Van Pottelberge, R.; Peeters, F.M. url  doi
openurl 
  Title Tunable circular dipolelike system in graphene : mixed electron-hole states Type A1 Journal article
  Year 2019 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 99 Issue 12 Pages (down) 125426  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Coupled electron-hole states are realized in a system consisting of a combination of an electrostatic potential barrier and ring-shaped potential well, which resembles a circular dipole. A perpendicular magnetic field induces confined states inside the Landau gaps which are mainly located at the barrier or ring. Hybridizations between the barrier and ring states are seen as anticrossings in the energy spectrum. As a consequence, the energy levels show an oscillating dependence on the electrostatic potential strength in combination with an oscillating migration of the wave functions between the barrier and ring. At the anticrossing points the quantum state consists of a mixture of electron and hole. The present system mimics closely the behavior of a relativistic dipole on gapped graphene.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000462900200005 Publication Date 2019-03-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 3 Open Access  
  Notes ; We thank M. Van der Donck for fruitful discussions. This work was supported by the Research Foundation of Flanders (FWO-V1) through an aspirant research grant for RVP. ; Approved Most recent IF: 3.836  
  Call Number UA @ admin @ c:irua:159409 Serial 5237  
Permanent link to this record
 

 
Author Missault, N.; Vasilopoulos, P.; Peeters, F.M.; Van Duppen, B. url  doi
openurl 
  Title Spin- and valley-dependent miniband structure and transport in silicene superlattices Type A1 Journal article
  Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 93 Issue 93 Pages (down) 125425  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We investigate silicene superlattices in the presence of a tunable barrier potential U, an exchange field M, and a perpendicular electric field E-z. The resulting miniband structure depends on the spin and valley indices and on the fields M and E-z. These fields determine the minigaps and also affect the additional Dirac points brought about by the periodic potential U. In addition, we consider diffusive transport and assess its dependence on the spin and valley indices as well as on temperature. The corresponding spin and valley polarizations strongly depend on the potential U and can be made almost 100% at very low temperatures at particular values of the Fermi energy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000372715800009 Publication Date 2016-03-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 49 Open Access  
  Notes ; This work was supported by the Canadian NSERC Grant No. OGP0121756 (P.V.), and by the Flemish Science Foundation FWO-Vl) with the “Odysseus” Program (N. M.) and with a PhD research grant (B.V.D.). ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:133194 Serial 4246  
Permanent link to this record
 

 
Author Nakhaee, M.; Ketabi, S.A.; Peeters, F.M. url  doi
openurl 
  Title Tight-binding model for borophene and borophane Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 97 Issue 12 Pages (down) 125424  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Starting from the simplified linear combination of atomic orbitals method in combination with first-principles calculations, we construct a tight-binding (TB) model in the two-centre approximation for borophene and hydrogenated borophene (borophane). The Slater and Koster approach is applied to calculate the TB Hamiltonian of these systems. We obtain expressions for the Hamiltonian and overlap matrix elements between different orbitals for the different atoms and present the SK coefficients in a nonorthogonal basis set. An anisotropic Dirac cone is found in the band structure of borophane. We derive a Dirac low-energy Hamiltonian and compare the Fermi velocities with that of graphene.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000427983700004 Publication Date 2018-03-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 45 Open Access  
  Notes ; Discussions with Dr. Vahid Derakhshan and M. A. M. Keshtan are gratefully acknowledged. This paper is supported by the Methusalem program of the Flemish government and the FLAT-ERA Project TRANS-2D-TMD. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:150836UA @ admin @ c:irua:150836 Serial 4987  
Permanent link to this record
 

 
Author Man, L.F.; Xu, W.; Xiao, Y.M.; Wen, H.; Ding, L.; Van Duppen, B.; Peeters, F.M. url  doi
openurl 
  Title Terahertz magneto-optical properties of graphene hydrodynamic electron liquid Type A1 Journal article
  Year 2021 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 104 Issue 12 Pages (down) 125420  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The discovery of the hydrodynamic electron liquid (HEL) in graphene [D. Bandurin et al., Science 351, 1055 (2016) and J. Crossno et al., Science 351, 1058 (2016)] has marked the birth of the solid-state HEL which can be probed near room temperature in a table-top setup. Here we examine the terahertz (THz) magneto-optical (MO) properties of a graphene HEL. Considering the case where the magnetic length l(B) = root h/eB is comparable to the mean-free path l(ee) for electron-electron interaction in graphene, the MO conductivities are obtained by taking a momentum balance equation approach on the basis of the Boltzmann equation. We find that when l(B) similar to l(ee), the viscous effect in a HEL can weaken significantly the THz MO effects such as cyclotron resonance and Faraday rotation. The upper hybrid and cyclotron resonance magnetoplasmon modes omega(+/-) are also obtained through the RPA dielectric function. The magnetoplasmons of graphene HEL at large wave-vector regime are affected by the viscous effect, and results in red-shifts of the magnetoplasmon frequencies. We predict that the viscosity in graphene HEL can affect strongly the magneto-optical and magnetoplasmonic properties, which can be verified experimentally.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000704419300004 Publication Date 2021-09-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 1 Open Access OpenAccess  
  Notes Approved Most recent IF: 3.836  
  Call Number UA @ admin @ c:irua:182518 Serial 7029  
Permanent link to this record
 

 
Author Bacaksiz, C.; Šabani, D.; Menezes, R.M.; Milošević, M.V. url  doi
openurl 
  Title Distinctive magnetic properties of CrI3 and CrBr3 monolayers caused by spin-orbit coupling Type A1 Journal article
  Year 2021 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 103 Issue 12 Pages (down) 125418  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract After the discovery of magnetism in monolayer CrI3, the magnetic properties of different 2D materials from the chromium-trihalide family are intuitively assumed to be similar, yielding magnetic anisotropy from the spin-orbit coupling on halide ligands. Here we reveal significant differences between the CrI3 and CrBr3 magnetic monolayers in their magnetic anisotropy, resulting Curie temperature, hysteresis in external magnetic field, and evolution of magnetism with strain, all predominantly attributed to distinctly different interplay of atomic contributions to spin-orbit coupling in two materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000646179300003 Publication Date 2021-03-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 18 Open Access OpenAccess  
  Notes Fonds Wetenschappelijk Onderzoek; Universiteit Antwerpen; Approved Most recent IF: 3.836  
  Call Number CMT @ cmt @c:irua:177506 Serial 6756  
Permanent link to this record
 

 
Author Michel, K.H.; Çakir, D.; Sevik, C.; Peeters, F.M. url  doi
openurl 
  Title Piezoelectricity in two-dimensional materials : comparative study between lattice dynamics and ab initio calculations Type A1 Journal article
  Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 95 Issue 95 Pages (down) 125415  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The elastic constant C-11 and piezoelectric stress constant e(1),(11) of two-dimensional (2D) dielectric materials comprising h-BN, 2H-MoS2, and other transition-metal dichalcogenides and dioxides are calculated using lattice dynamical theory. The results are compared with corresponding quantities obtained with ab initio calculations. We identify the difference between clamped-ion and relaxed-ion contributions with the dependence on inner strains which are due to the relative displacements of the ions in the unit cell. Lattice dynamics allows us to express the inner-strain contributions in terms of microscopic quantities such as effective ionic charges and optoacoustical couplings, which allows us to clarify differences in the piezoelectric behavior between h-BN and MoS2. Trends in the different microscopic quantities as functions of atomic composition are discussed.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000396013400005 Publication Date 2017-03-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 29 Open Access  
  Notes ; The authors acknowledge useful discussions with L. Wirtz and A. Molina-Sanchez. This work was supported by the Methusalem program and the Fonds voor Wetenschappelijk Onderzoek-Vlaanderen. Computational resources were provided by HPC infrastructure of the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:142444 Serial 4603  
Permanent link to this record
 

 
Author Khoeini, F.; Shakouri; Peeters, F.M. url  doi
openurl 
  Title Peculiar half-metallic state in zigzag nanoribbons of MoS2 : spin filtering Type A1 Journal article
  Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 94 Issue 94 Pages (down) 125412  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Layered structures of molybdenum disulfide (MoS2) belong to a new class of two-dimensional (2D) semiconductor materials in which monolayers exhibit a direct band gap in their electronic spectrum. This band gap has recently been shown to vanish due to the presence of metallic edge modes when MoS2 monolayers are terminated by zigzag edges on both sides. Here, we demonstrate that a zigzag nanoribbon of MoS2, when exposed to an external exchange field in combination with a transverse electric field, has the potential to exhibit a peculiar half-metallic nature and thereby allows electrons of only one spin direction to move. The peculiarity of such spin-selective conductors originates from a spin switch near the gap-closing region, so the allowed spin orientation can be controlled by means of an external gate voltage. It is shown that the induced half-metallic phase is resistant to random fluctuations of the exchange field as well as the presence of edge vacancies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000383238800009 Publication Date 2016-09-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 38 Open Access  
  Notes ; ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:137130 Serial 4360  
Permanent link to this record
 

 
Author Bacaksiz, C.; Cahangirov, S.; Rubio, A.; Senger, R.T.; Peeters, F.M.; Sahin, H. url  doi
openurl 
  Title Bilayer SnS2 : tunable stacking sequence by charging and loading pressure Type A1 Journal article
  Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 93 Issue 93 Pages (down) 125403  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Employing density functional theory-based methods, we investigate monolayer and bilayer structures of hexagonal SnS2, which is a recently synthesized monolayer metal dichalcogenide. Comparison of the 1H and 1T phases of monolayer SnS2 confirms the ground state to be the 1T phase. In its bilayer structure we examine different stacking configurations of the two layers. It is found that the interlayer coupling in bilayer SnS2 is weaker than that of typical transition-metal dichalcogenides so that alternative stacking orders have similar structural parameters and they are separated with low energy barriers. A possible signature of the stacking order in the SnS2 bilayer has been sought in the calculated absorbance and reflectivity spectra. We also study the effects of the external electric field, charging, and loading pressure on the characteristic properties of bilayer SnS2. It is found that (i) the electric field increases the coupling between the layers at its preferred stacking order, so the barrier height increases, (ii) the bang gap value can be tuned by the external E field and under sufficient E field, the bilayer SnS2 can become a semimetal, (iii) the most favorable stacking order can be switched by charging, and (iv) a loading pressure exceeding 3 GPa changes the stacking order. The E-field tunable band gap and easily tunable stacking sequence of SnS2 layers make this 2D crystal structure a good candidate for field effect transistor and nanoscale lubricant applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000371405000005 Publication Date 2016-03-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 38 Open Access  
  Notes ; The calculations were performed at TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). C.B., H.S., and R.T.S. acknowledge support from TUBITAK Project No. 114F397. H.S. is supported by an FWO Pegasus Marie Curie Fellowship. S.C. and A.R. acknowledge financial support from the Marie Curie grant FP7-PEOPLE-2013-IEF Project No. 628876, the European Research Council (ERC-2010-AdG-267374), and Spanish grant Grupos Consolidados (IT578-13). S.C. acknowledges support from the Scientific and Technological Research Council of Turkey (TUBITAK) under Project No. 115F388. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:132345 Serial 4144  
Permanent link to this record
 

 
Author Claes, J.; Partoens, B.; Lamoen, D. pdf  url
doi  openurl
  Title Decoupled DFT-1/2 method for defect excitation energies Type A1 Journal Article
  Year 2023 Publication Physical Review B Abbreviated Journal Phys. Rev. B  
  Volume 108 Issue 12 Pages (down) 125306  
  Keywords A1 Journal Article; Condensed Matter Theory (CMT) ;  
  Abstract The DFT-1/2 method is a band-gap correction with GW precision at a density functional theory (DFT) computational cost. The method was also extended to correct the gap between defect levels, allowing for the calculation of optical transitions. However, this method fails when the atomic character of the occupied and unoccupied defect levels is similar as we illustrate by two examples, the tetrahedral hydrogen interstitial and the negatively charged vacancy in diamond. We solve this problem by decoupling the effect of the occupied and unoccupied defect levels and call this the decoupled DFT-1/2 method for defects.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001089302800003 Publication Date 2023-09-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.7 Times cited Open Access Not_Open_Access  
  Notes This work was supported by the FWO (Research Foundation-Flanders), Project No. G0D1721N. This work was performed in part using HPC resources from the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the FWO-Vlaanderen and the Flemish Government department EWI (Economie, Wetenschap & Innovatie). Approved Most recent IF: 3.7; 2023 IF: 3.836  
  Call Number CMT @ cmt @c:irua:201287 Serial 8976  
Permanent link to this record
 

 
Author Topalovic, D.B.; Arsoski, V.V.; Tadic, M.Z.; Peeters, F.M. url  doi
openurl 
  Title Confined electron states in two-dimensional HgTe in magnetic field : quantum dot versus quantum ring behavior Type A1 Journal article
  Year 2019 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 100 Issue 12 Pages (down) 125304  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We investigate the electron states and optical absorption in square- and hexagonal-shaped two-dimensional (2D) HgTe quantum dots and quantum rings in the presence of a perpendicular magnetic field. The electronic structure is modeled by means of the sp(3)d(5)s* tight-binding method within the nearest-neighbor approximation. Both bulklike and edge states appear in the energy spectrum. The bulklike states in quantum rings exhibit Aharonov-Bohm oscillations in magnetic field, whereas no such oscillations are found in quantum dots, which is ascribed to the different topology of the two systems. When magnetic field varies, all the edge states in square quantum dots appear as quasibands composed of almost fully flat levels, whereas some edge states in quantum rings are found to oscillate with magnetic field. However, the edge states in hexagonal quantum dots are localized like in rings. The absorption spectra of all the structures consist of numerous absorption lines, which substantially overlap even for small line broadening. The absorption lines in the infrared are found to originate from transitions between edge states. It is shown that the magnetic field can be used to efficiently tune the optical absorption of HgTe 2D quantum dot and quantum ring systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000486638400007 Publication Date 2019-09-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 3 Open Access  
  Notes ; This work was supported by Projects No. III 41028, No. III 42008, and No. III 45003 funded by the Serbian Ministry of Education, Science and Technological Development, and the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836  
  Call Number UA @ admin @ c:irua:162787 Serial 5409  
Permanent link to this record
 

 
Author Müller-Caspary, K.; Duchamp, M.; Roesner, M.; Migunov, V.; Winkler, F.; Yang, H.; Huth, M.; Ritz, R.; Simson, M.; Ihle, S.; Soltau, H.; Wehling, T.; Dunin-Borkowski, R.E.; Van Aert, S.; Rosenauer, A. url  doi
openurl 
  Title Atomic-scale quantification of charge densities in two-dimensional materials Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 98 Issue 12 Pages (down) 121408  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The charge density is among the most fundamental solid state properties determining bonding, electrical characteristics, and adsorption or catalysis at surfaces. While atomic-scale charge densities have as yet been retrieved by solid state theory, we demonstrate both charge density and electric field mapping across a mono-/bilayer boundary in 2D MoS2 by momentum-resolved scanning transmission electron microscopy. Based on consistency of the four-dimensional experimental data, statistical parameter estimation and dynamical electron scattering simulations using strain-relaxed supercells, we are able to identify an AA-type bilayer stacking and charge depletion at the Mo-terminated layer edge.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000445508200004 Publication Date 2018-09-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 10 Open Access OpenAccess  
  Notes ; K.M.-C. acknowledges funding from the Initiative and Network Fund of the Helmholtz Association (VH-NG-1317) within the framework of the Helmholtz Young Investigator Group moreSTEM at Forschungszentrum Julich, Germany. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:153621 Serial 5078  
Permanent link to this record
 

 
Author Van der Donck, M.; Peeters, F.M. url  doi
openurl 
  Title Spectrum of exciton states in monolayer transition metal dichalcogenides : angular momentum and Landau levels Type A1 Journal article
  Year 2019 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 99 Issue 11 Pages (down) 115439  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract A four-band exciton Hamiltonian is constructed starting from the single-particle Dirac Hamiltonian for charge carriers in monolayer transition metal dichalcogenides (TMDs). The angular part of the exciton wave function can be separated from the radial part, in the case of zero center of mass momentum excitons, by exploiting the eigenstates of the total exciton angular momentum operator with which the Hamiltonian commutes. We explain why this approach fails for excitons with finite center of mass momentum or in the presence of a perpendicular magnetic field and present an approximation to resolve this issue. We calculate the (binding) energy and average interparticle distance of different excited exciton states in different TMDs and compare these with results available in the literature. Remarkably, we find that the intervalley exciton ground state in the -/+ K valley has angular momentum j = +/- 1, which is due to the pseudospin of the separate particles. The exciton mass and the exciton Landau levels are calculated and we find that the degeneracy of exciton states with opposite relative angular momentum is altered by a magnetic field.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000462896400004 Publication Date 2019-03-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 9 Open Access  
  Notes ; This work was supported by the Research Foundation of Flanders (FWO-Vl) through an aspirant research grant for MVDD and by the FLAG-ERA project TRANS-2D-TMD. ; Approved Most recent IF: 3.836  
  Call Number UA @ admin @ c:irua:159406 Serial 5230  
Permanent link to this record
 

 
Author Zarenia, M.; Neilson, D.; Partoens, B.; Peeters, F.M. url  doi
openurl 
  Title Wigner crystallization in transition metal dichalcogenides : a new approach to correlation energy Type A1 Journal article
  Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 95 Issue 95 Pages (down) 115438  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We introduce a new approach for the correlation energy of one- and two-valley two-dimensional electron gas (2DEG) systems. Our approach is based on an interpolation between two limits, a random phase approximation at high densities and a classical approach at low densities which gives excellent agreement with available Quantum Monte Carlo (QMC) calculations. The two-valley 2DEG model is introduced to describe the electron correlations in monolayer transition metal dichalcogenides (TMDs). We study the zero-temperature transition from a Fermi liquid to a quantum Wigner crystal phase in monolayer TMDs. Consistent with QMC, we find that electrons crystallize at r(s) = 31 in one-valley 2DEG. For two valleys, we predict Wigner crystallization at r(s) = 30, implying that valley degeneracy has little effect on the critical r(s), in contrast to an earlier claim.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000399141200003 Publication Date 2017-03-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 18 Open Access  
  Notes ; This work was partially supported by the Flanders Research Foundation (FWO) and the Methusalem program of the Flemish government. D.N. acknowledges support by the University of Camerino FAR project CESEMN. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:142428 Serial 4613  
Permanent link to this record
 

 
Author Han, F.W.; Xu, W.; Li, L.L.; Zhang, C.; Dong, H.M.; Peeters, F.M. url  doi
openurl 
  Title Electronic and transport properties of n-type monolayer black phosphorus at low temperatures Type A1 Journal article
  Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 95 Issue 95 Pages (down) 115436  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We present a detailed theoretical study of the electronic and transport properties of monolayer black phosphorus (BP). This study is motivated by recent experimental activities in investigating n-type few-layer BP systems. The electron density of states, the screening length, and the low-temperature electron mobility are calculated for monolayer BP (MLBP). In particular, the electron transport mobilities along the armchair and zigzag directions are examined on the basis of the momentum-balance equation derived from a semiclassical Boltzmann equation. The anisotropic electron mobilities in MLBP along different directions are demonstrated where the electron-impurity scattering is considered. Furthermore, we compare the results obtained from two electronic band structures of MLBP and find that the simplified model can describe quite rightly the electronic and transport properties of MLBP. This study is relevant to the application of few-layer BP based electronic systems as advanced electronic devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000399140700012 Publication Date 2017-03-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 12 Open Access  
  Notes National Natural Science Foundation of China, 11574319 11304316 11304317 11604380 ; Ministry of Science and Technology of the People's Republic of China, 2011YQ130018 ; Chinese Academy of Sciences; Approved Most recent IF: 3.836  
  Call Number CMT @ cmt @ c:irua:142431 Serial 4564  
Permanent link to this record
 

 
Author Van der Donck, M.; Peeters, F.M. url  doi
openurl 
  Title Rich many-body phase diagram of electrons and holes in doped monolayer transition metal dichalcogenides Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 98 Issue 11 Pages (down) 115432  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We use a variational technique to study the many-body phase diagram of electrons and holes in n-doped and p-doped monolayer transition metal dichalcogenides (TMDs). We find a total of four different phases. (i) A fully spin polarized and valley polarized ferromagnetic state. (ii) A state with no global spin polarization but with spin polarization in each valley separately, i.e., spin-valley locking. (iii) A state with spin polarization in one of the valleys and little to no spin polarization in the other valley. (iv) A paramagnetic state with no valley polarization. These phases are separated by first-order phase transitions and are determined by the particle density and the dielectric constant of the substrate. We find that in the presence of a perpendicular magnetic field the four different phases persist. In the case of n-doped MoS2, a fifth phase, which is completely valley polarized but not spin polarized, appears for magnetic fields larger than 7 T and for magnetic fields larger than 23 T completely replaces the second phase.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000445507000009 Publication Date 2018-09-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 8 Open Access  
  Notes ; This work was supported by the Research Foundation of Flanders (FWO-Vl) through an aspirant research grant for MVDD and by the FLAG-ERA project TRANS-2D-TMD. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:153622UA @ admin @ c:irua:153622 Serial 5125  
Permanent link to this record
 

 
Author Mirzakhani, M.; da Costa, D.R.; Peeters, F.M. url  doi
openurl 
  Title Isolated and hybrid bilayer graphene quantum rings Type A1 Journal article
  Year 2022 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 105 Issue 11 Pages (down) 115430-11  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using the continuum model, we investigate the electronic properties of two types of bilayer graphene (BLG) quantum ring (QR) geometries: (i) An isolated BLG QR and (ii) a monolayer graphene (MLG) with a QR put on top of an infinite graphene sheet (hybrid BLG QR). Solving the Dirac-Weyl equation in the presence of a perpendicular magnetic field and applying the infinite mass boundary condition at the ring boundaries, we obtain analytical results for the energy levels and corresponding wave spinors for both structures. In the case of isolated BLG QR, we observe a sizable and magnetically tunable band gap which agrees with the tight-binding transport simulations. Our analytical results also show the intervalley symmetry EeK (m) = ???EK??? h (m) between the electron (e) and the hole (h) states (m is the angular momentum quantum number) for the energy spectrum of the isolated BLG QR. The presence of interface boundary in a hybrid BLG QR modifies drastically the energy levels as compared with that of an isolated BLG QR. Its energy levels are tunable from MLG dot to isolated BLG QR and to MLG Landau energy levels as the magnetic field is varied. Our predictions can be verified experimentally using different techniques such as by magnetotransport measurements.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000801209300006 Publication Date 2022-03-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.7  
  Call Number UA @ admin @ c:irua:188703 Serial 7175  
Permanent link to this record
 

 
Author Nascimento, J.S.; da Costa, D.R.; Zarenia, M.; Chaves, A.; Pereira, J.M., Jr. url  doi
openurl 
  Title Magnetic properties of bilayer graphene quantum dots in the presence of uniaxial strain Type A1 Journal article
  Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 96 Issue 11 Pages (down) 115428  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using the tight-binding approach coupled with mean-field Hubbard model, we theoretically study the effect of mechanical deformations on the magnetic properties of bilayer graphene (BLG) quantum dots (QDs). Results are obtained for AA-and AB(Bernal)-stacked BLG QDs, considering different geometries (hexagonal, triangular and square shapes) and edge types (armchair and zigzag edges). In the absence of strain, our results show that (i) the magnetization is affected by taking different dot sizes only for hexagonal BLG QDs with zigzag edges, exhibiting different critical Hubbard interactions, and (ii) the magnetization does not depend on the interlayer hopping energies, except for the geometries with zigzag edges and AA stacking. In the presence of in-plane and uniaxial strain, for all geometries we obtain two different magnetization regimes depending on the applied strain amplitude. The appearance of such different regimes is due to the breaking of layer and sublattice symmetries in BLG QDs.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000411077400008 Publication Date 2017-09-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 4 Open Access  
  Notes ; This work was financially supported by CNPq, FUNCAP, CAPES Foundation, the Flemish Science Foundation (FWO-Vl), and the Brazilian Program Science Without Borders (CsF). ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:146751 Serial 4788  
Permanent link to this record
 

 
Author Yagmurcukardes, M.; Bacaksiz, C.; Unsal, E.; Akbali, B.; Senger, R.T.; Sahin, H. url  doi
openurl 
  Title Strain mapping in single-layer two-dimensional crystals via Raman activity Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 97 Issue 11 Pages (down) 115427  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract By performing density functional theory-based ab initio calculations, Raman-active phonon modes of single-layer two-dimensional (2D) materials and the effect of in-plane biaxial strain on the peak frequencies and corresponding activities of the Raman-active modes are calculated. Our findings confirm the Raman spectrum of the unstrained 2D crystals and provide expected variations in the Raman-active modes of the crystals under in-plane biaxial strain. The results are summarized as follows: (i) frequencies of the phonon modes soften (harden) under applied tensile (compressive) strains; (ii) the response of the Raman activities to applied strain for the in-plane and out-of-plane vibrational modes have opposite trends, thus, the built-in strains in the materials can be monitored by tracking the relative activities of those modes; (iii) in particular, the A peak in single-layer Si and Ge disappears under a critical tensile strain; (iv) especially in mono-and diatomic single layers, the shift of the peak frequencies is a stronger indication of the strain rather than the change in Raman activities; (v) Raman-active modes of single-layer ReX2 (X = S, Se) are almost irresponsive to the applied strain. Strain-induced modifications in the Raman spectrum of 2D materials in terms of the peak positions and the relative Raman activities of the modes could be a convenient tool for characterization.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000427799300006 Publication Date 2018-03-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 21 Open Access  
  Notes ; Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. acknowledges financial support from the Scientific and Technological Research Council of Turkey (TUBITAK) under Project No. 116C073. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:150840UA @ admin @ c:irua:150840 Serial 4979  
Permanent link to this record
 

 
Author Neek-Amal, M.; Rashidi, R.; Nair, R.R.; Neilson, D.; Peeters, F.M. url  doi
openurl 
  Title Electric-field-induced emergent electrical connectivity in graphene oxide Type A1 Journal article
  Year 2019 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 99 Issue 11 Pages (down) 115425  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Understanding the appearance of local electrical connectivity in liquid filled layered graphene oxide subjected to an external electric field is important to design electrically controlled smart permeable devices and also to gain insight into the physics behind electrical effects on confined water permeation. Motivated by recent experiments [K. G. Zhou et al. Nature (London) 559, 236 (2018)], we introduce a new model with random percolating paths for electrical connectivity in micron thick water filled layered graphene oxide, which mimics parallel resistors connected across the top and bottom electrodes. We find that a strong nonuniform radial electric field of the order similar to 10-50 mV/nm can be induced between layers depending on the current flow through the formed conducting paths. The maxima of the induced fields are not necessarily close to the electrodes and may be localized in the middle region of the layered material. The emergence of electrical connectivity and the associated electrical effects have a strong influence on the surrounding fluid in terms of ionization and wetting which subsequently determines the permeation properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000461960100001 Publication Date 2019-03-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 3 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem program. ; Approved Most recent IF: 3.836  
  Call Number UA @ admin @ c:irua:158534 Serial 5206  
Permanent link to this record
 

 
Author De Beule, C.; Zarenia, M.; Partoens, B. url  doi
openurl 
  Title Transmission in graphene-topological insulator heterostructures Type A1 Journal article
  Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 95 Issue 95 Pages (down) 115424  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We investigate scattering of the topological surface state of a three-dimensional time-reversal invariant topological insulator when graphene is deposited on the topological-insulator surface. Specifically, we consider the (111) surface of a Bi2Se3-like topological insulator. We present a low-energy model for the graphene-topological insulator heterostructure and we calculate the transmission probability at zigzag and armchair edges of the deposited graphene, and the conductance through graphene nanoribbon barriers, and show that its features can be understood from antiresonances in the transmission probability.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000399216700004 Publication Date 2017-03-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 4 Open Access  
  Notes ; The authors would like to thank B. Van Duppen for interesting discussions. This work was supported by the Flemish Research Foundation (FWO) through the Aspirant Fellowship of Christophe De Beule. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:143652 Serial 4609  
Permanent link to this record
 

 
Author Van der Donck, M.; Peeters, F.M.; Van Duppen, B. url  doi
openurl 
  Title Transport properties of bilayer graphene in a strong in-plane magnetic field Type A1 Journal article
  Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 93 Issue 93 Pages (down) 115423  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract A strong in-plane magnetic field drastically alters the low-energy spectrum of bilayer graphene by separating the parabolic energy dispersion into two linear Dirac cones. The effect of this dramatic change on the transport properties strongly depends on the orientation of the in-plane magnetic field with respect to the propagation direction of the charge carriers and the angle at which they impinge on the electrostatic potentials. For magnetic fields oriented parallel to the potential boundaries an additional propagating mode that results from the splitting into Dirac cones enhances the transmission probability for charge carriers tunneling through the potentials and increases the corresponding conductance. Our results show that the chiral suppression of transmission at normal incidence, reminiscent of bilayer graphene's 2 pi Berry phase, is turned into a chiral enhancement when the magnetic field increases, thus indicating a transition from a bilayer to a monolayer-like system at normal incidence. Further, we find that the typical transmission resonances stemming from confinement in a potential barrier are shifted to higher energy and are eventually transformed into antiresonances with increasing magnetic field. For magnetic fields oriented perpendicular to the potential boundaries we find a very pronounced transition from a bilayer system to two separated monolayer-like systems with Klein tunneling emerging at certain incident angles symmetric around 0, which also leaves a signature in the conductance. For both orientations of the magnetic field, the transmission probability is still correctly described by pseudospin conservation. Finally, to motivate the large in-plane magnetic field, we show that its energy spectrum can be mimicked by specific lattice deformations such as a relative shift of one of the layers. With this equivalence we introduce the notion of an in-plane pseudomagnetic field.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000372409900006 Publication Date 2016-03-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 11 Open Access  
  Notes ; This work was supported by Fonds Wetenschappelijk Onderzoek (FWO-Vl) through an aspirant research grant to M.V.D.D. and B.V.D. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:133197 Serial 4267  
Permanent link to this record
 

 
Author Zhang, H.Y.; Xiao, Y.M.; N. Li, Q.; Ding, L.; Van Duppen, B.; Xu, W.; Peeters, F.M. url  doi
openurl 
  Title Anisotropic and tunable optical conductivity of a two-dimensional semi-Dirac system in the presence of elliptically polarized radiation Type A1 Journal article
  Year 2022 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 105 Issue 11 Pages (down) 115423-115429  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We investigate the effect of ellipticity ratio of the polarized radiation field on optoelectronic properties of a two-dimensional (2D) semi-Dirac (SD) system. The optical conductivity is calculated within the energy balance equation approach derived from the semiclassical Boltzmann equation. We find that there exists the anisotropic optical absorption induced via both the intra-and interband electronic transition channels in the perpendicular xx and yy directions. Furthermore, we examine the effects of the ellipticity ratio, the temperature, the carrier density, and the band-gap parameter on the optical conductivity of the 2D SD system placed in transverse and vertical directions, respectively. It is shown that the ellipticity ratio, temperature, carrier density, and band-gap parameter can play the important roles in tuning the strength, peak position, and shape of the optical conductivity spectrum. The results obtained from this study indicate that the 2D SD system can be a promising anisotropic and tunable optical and optoelectronic material for applications in innovative 2D optical and optoelectronic devices, which are active in the infrared and terahertz bandwidths.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000802810700002 Publication Date 2022-03-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited 1 Open Access OpenAccess  
  Notes Approved Most recent IF: 3.7  
  Call Number UA @ admin @ c:irua:188660 Serial 7125  
Permanent link to this record
 

 
Author Aslani, Z.; Sisakht, E.T.; Fazileh, F.; Ghorbanfekr-Kalashami, H.; Peeters, F.M. url  doi
openurl 
  Title Conductance fluctuations of monolayer GeSnH2$ in the topological phase using a low-energy effective tight-binding Hamiltonian Type A1 Journal article
  Year 2019 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 99 Issue 11 Pages (down) 115421  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract An effective tight-binding (TB) Hamiltonian for monolayer GeSnH2 is constructed which has an inversion-asymmetric honeycomb structure. The low-energy band structure of our TB model agrees very well with previous ab initio calculations even under biaxial tensile strain. Our model predicts a phase transition at 7.5% biaxial tensile strain in agreement with DFT calculations. Upon 8.5% strain the system exhibits a band gap of 134 meV, suitable for room temperature applications. It is shown that an external applied magnetic field produces a special phase which is a combination of the quantum Hall (QH) and quantum spin Hall (QSH) phases; and at a critical magnetic field strength the QSH phase completely disappears. The topological nature of the phase transition is confirmed from: (1) the calculation of the Z(2) topological invariant, and (2) quantum transport properties of disordered GeSnH2 nanoribbons which allows us to determine the universality class of the conductance fluctuations. The application of an external applied magnetic field reduces the conductance fluctuations by a factor of root 2.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000461958900006 Publication Date 2019-03-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 2 Open Access  
  Notes ; This work was supported by the FLAG-ERA project TRANS-2D-TMD. ; Approved Most recent IF: 3.836  
  Call Number UA @ admin @ c:irua:158538 Serial 5199  
Permanent link to this record
 

 
Author Nakhaee, M.; Ketabi, S.A.; Peeters, F.M. url  doi
openurl 
  Title Dirac nodal line in bilayer borophene : tight-binding model and low-energy effective Hamiltonian Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 98 Issue 11 Pages (down) 115413  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Bilayer hexagonal borophene, which is bound together through pillars, is a novel topological semimetal. Using density functional theory, we investigate its electronic band structure and show that it is a Dirac material which exhibits a nodal line. A tight-binding model was constructed based on the Slater-Koster approach, which accurately models the electronic spectrum. We constructed an effective four-band model Hamiltonian to describe the spectrum near the nodal line. This Hamiltonian can be used as a new platform to study the new properties of nodal line semimetals. We found that the nodal line is created by edge states and is very robust against perturbations and impurities. Breaking symmetries can split the nodal line, but cannot open a gap.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000443916200007 Publication Date 2018-09-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 19 Open Access  
  Notes ; This work was supported by the Methusalem program of the Flemish government and the graphene FLAG-ERA project TRANS-2D-TMD. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:153649UA @ admin @ c:irua:153649 Serial 5090  
Permanent link to this record
 

 
Author Callewaert, V.; Shastry, K.; Saniz, R.; Makkonen, I.; Barbiellini, B.; Assaf, B.A.; Heiman, D.; Moodera, J.S.; Partoens, B.; Bansil, A.; Weiss, A.H.; url  doi
openurl 
  Title Positron surface state as a spectroscopic probe for characterizing surfaces of topological insulator materials Type A1 Journal article
  Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 94 Issue 94 Pages (down) 115411  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Topological insulators are attracting considerable interest due to their potential for technological applications and as platforms for exploring wide-ranging fundamental science questions. In order to exploit, fine-tune, control, and manipulate the topological surface states, spectroscopic tools which can effectively probe their properties are of key importance. Here, we demonstrate that positrons provide a sensitive probe for topological states and that the associated annihilation spectrum provides a technique for characterizing these states. Firm experimental evidence for the existence of a positron surface state near Bi2Te2Se with a binding energy of E-b = 2.7 +/- 0.2 eV is presented and is confirmed by first-principles calculations. Additionally, the simulations predict a significant signal originating from annihilation with the topological surface states and show the feasibility to detect their spin texture through the use of spin-polarized positron beams.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000383232800012 Publication Date 2016-09-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 15 Open Access  
  Notes ; I.M. acknowledges discussions with M. Ervasti and A. Harju. V.C. and R.S. were supported by the FWO-Vlaanderen through Project No. G. 0224.14N. The computational resources and services used in this paper were, in part, provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the Hercules Foundation and the Flemish Government (EWI Department). I.M. acknowledges financial support from the Academy of Finland (Projects No. 285809 and No. 293932). The work at Northeastern University was supported by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences Grant No. DE-FG02-07ER46352 and benefited from Northeastern University's Advanced Scientific Computation Center (ASCC) and the NERSC supercomputing center through DOE Grant No. DE-AC02-05CH11231. K.S. and A.W. acknowledge financial support from the National Science Foundation through Grants No. DMR-MRI-1338130 and No. DMR-1508719. D.H. received financial support from the National Science Foundation (Grant No. ECCS-1402738). J.S.M. was supported by the STC Center for Integrated Quantum Materials under NSF Grants No. DMR-1231319, No. DMR-1207469, and ONR Grant No. N00014-13-1-0301. B.A.A. also acknowledges support from the LabEx ENS-ICFP Grant No. ANR-10-LABX-0010/ANR-10-IDEX-0001-02 PSL. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:137134 Serial 4362  
Permanent link to this record
 

 
Author Cunha, S.M.; de Costa, D.R.; Pereira Jr, J.M.; Costa Filho, R.N.; Van Duppen, B.; Peeters, F.M. url  doi
openurl 
  Title Band-gap formation and morphing in alpha-T-3 superlattices Type A1 Journal article
  Year 2021 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 104 Issue 11 Pages (down) 115409  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Electrons in alpha-T-3 lattices behave as condensed-matter analogies of integer-spin Dirac fermions. The three atoms making up the unit cell bestow the energy spectrum with an additional energy band that is completely flat, providing unique electronic properties. The interatomic hopping term, alpha, is known to strongly affect the electronic spectrum of the two-dimensional (2D) lattice, allowing it to continuously morph from graphenelike responses to the behavior of fermions in a dice lattice. For pristine lattice structures the energy bands are gapless, but small deviations in the atomic equivalence of the three sublattices will introduce gaps in the spectrum. It is unknown how these affect transport and electronic properties such as the energy spectrum of superlattice minibands. Here we investigate the dependency of these properties on the parameter a accounting for different symmetry-breaking terms, and we show how it affects band-gap formation. Furthermore, we find that superlattices can force band gaps to close and shift in energy. Our results demonstrate that alpha-T-3 superlattices provide a versatile material for 2D band-gap engineering purposes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000696091600003 Publication Date 2021-09-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 6 Open Access OpenAccess  
  Notes Approved Most recent IF: 3.836  
  Call Number UA @ admin @ c:irua:181544 Serial 6972  
Permanent link to this record
 

 
Author Van Pottelberge, R.; Zarenia, M.; Peeters, F.M. url  doi
openurl 
  Title Magnetic field dependence of atomic collapse in bilayer graphene Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 98 Issue 11 Pages (down) 115406  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The spectrum of a Coulomb impurity in bilayer graphene is investigated as function of the strength of a perpendicular magnetic field for different values of the angular quantum number m and for different values of the gate voltage. We point out fundamental differences between the results from the two-band and four-band model. The supercritical instability and fall-to-center phenomena are investigated in the presence of a magnetic field. We find that in the four-band model the fall-to-center phenomenon occurs as in monolayer graphene, while this is not the case in the two-band model. We find that in a magnetic field the supercritical instability manifests itself as a series of anticrossings in the hole part of the spectrum for states coming from the low-energy band. However, we also find very distinct anticrossings in the electron part of the spectrum that continue into the hole part, which are related to the higher energy band of the four-band model. At these anticrossings, we find a very sharp peak in the probability density close to the impurity, reminiscent for the fall-to-center phenomenon. In this paper, these peculiar and interesting effects are studied for different magnetic field, interlayer coupling, and bias potential strengths.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000443671900010 Publication Date 2018-09-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 3 Open Access  
  Notes ; We thank Matthias Van der Donck and Ben Van Duppen for fruitful discussions. This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem funding of the Flemish Government. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:153654UA @ admin @ c:irua:153654 Serial 5113  
Permanent link to this record
 

 
Author Saberi-Pouya, S.; Vazifehshenas, T.; Salavati-fard, T.; Farmanbar, M. url  doi
openurl 
  Title Anisotropic hybrid excitation modes in monolayer and double-layer phosphorene on polar substrates Type A1 Journal article
  Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 96 Issue 11 Pages (down) 115402  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We investigate the anisotropic hybrid surface optical (SO) phonon-plasmon dispersion relations in monolayer and double-layer phosphorene systems located on the polar substrates, such as SiO2, h-BN, and Al2O3. We calculate these hybrid modes by using the dynamical dielectric function in the random phase approximation in which the electron-electron interaction and long-range electric field generated by the substrate SO phonons via Frohlich interaction are taken into account. In the long-wavelength limit, we obtain some analytical expressions for the hybrid SO phonon-plasmon dispersion relations which agree with those obtained from the loss function. Our results indicate a strong anisotropy in SO phonon-plasmon modes, which are stronger along the light-mass direction in our heterostructures. Furthermore, we find that the type of substrate has a significant effect on the dispersion relations of the coupled modes. Importantly, the hybrid excitations are apparently sensitive to the misalignment and separation between layers in double-layer phosphorene.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000408826200004 Publication Date 2017-09-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 6 Open Access  
  Notes ; ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:145665 Serial 4737  
Permanent link to this record
 

 
Author Chaves, A.; Mayers, M.Z.; Peeters, F.M.; Reichman, D.R. url  doi
openurl 
  Title Theoretical investigation of electron-hole complexes in anisotropic two-dimensional materials Type A1 Journal article
  Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 93 Issue 93 Pages (down) 115314  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Trions and biexcitons in anisotropic two-dimensional materials are investigated within an effective mass theory. Explicit results are obtained for phosphorene and arsenene, materials that share features such as a direct quasiparticle gap and anisotropic conduction and valence bands. Trions are predicted to have remarkably high binding energies and an elongated electron-hole structure with a preference for alignment along the armchair direction, where the effective masses are lower. We find that biexciton binding energies are also notably large, especially for monolayer phosphorene, where they are found to be twice as large as those for typical monolayer transition metal dichalcogenides.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000372715700001 Publication Date 2016-03-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 33 Open Access  
  Notes ; This work has been financially supported by CNPq, through the PRONEX/FUNCAP and Science Without Borders programs, the FWO-CNPq bilateral program between Brazil and Flanders, and the Lemann Foundation. M.Z.M. is supported by a fellowship from the National Science Foundation, under Grant No. DGE-11-44155. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:133191 Serial 4262  
Permanent link to this record
 

 
Author Lima, I.L.C.; Milošević, M.V.; Peeters, F.M.; Chaves, A. doi  openurl
  Title Tuning of exciton type by environmental screening Type A1 Journal article
  Year 2023 Publication Physical review B Abbreviated Journal  
  Volume 108 Issue 11 Pages (down) 115303-115308  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We theoretically investigate the binding energy and electron-hole (e-h) overlap of excitonic states confined at the interface between two-dimensional materials with type-II band alignment, i.e., with lowest conduction and highest valence band edges placed in different materials, arranged in a side-by-side planar heterostructure. We propose a variational procedure within the effective mass approximation to calculate the exciton ground state and apply our model to a monolayer MoS2/WS2 heterostructure. The role of nonabrupt interfaces between the materials is accounted for in our model by assuming a WxMo1-xS2 alloy around the interfacial region. Our results demonstrate that (i) interface-bound excitons are energetically favorable only for small interface thickness and/or for systems under high dielectric screening by the materials surrounding the monolayer, and that (ii) the interface exciton binding energy and its e-h overlap are controllable by the interface width and dielectric environment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001077758300002 Publication Date 2023-09-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:200356 Serial 9110  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: