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on polar substrates
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We investigate the anisotropic hybrid surface optical (SO) phonon-plasmon dispersion relations in monolayer
and double-layer phosphorene systems located on the polar substrates, such as SiO2, h-BN, and Al2O3. We
calculate these hybrid modes by using the dynamical dielectric function in the random phase approximation in
which the electron-electron interaction and long-range electric field generated by the substrate SO phonons via
Fröhlich interaction are taken into account. In the long-wavelength limit, we obtain some analytical expressions
for the hybrid SO phonon-plasmon dispersion relations which agree with those obtained from the loss function.
Our results indicate a strong anisotropy in SO phonon-plasmon modes, which are stronger along the light-mass
direction in our heterostructures. Furthermore, we find that the type of substrate has a significant effect on the
dispersion relations of the coupled modes. Importantly, the hybrid excitations are apparently sensitive to the
misalignment and separation between layers in double-layer phosphorene.
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I. INTRODUCTION

Phosphorene, a monolayer of black phosphorus (BP), has
recently attracted special attention among two-dimensional
materials (2DMs) due to its unique highly anisotropic elec-
tronic and optical properties [1–12]. BP is the most stable
allotrope of phosphorus at room temperature and pressure.
Few-layer phosphorene can be obtained through a mechanical
exfoliation method akin to graphene [13,14]. However, unlike
graphene the phosphorene layers are not perfectly flat and
form a puckered surface due to the sp3 hybridization of 3s
and 3p atomic orbitals. Also, the band gap of BP is direct
and can be tuned from 0.3 eV to the visible part of the
spectrum [15,16]. In contrast, graphene is gapless, and the
transition metal dichalcogenides (TMDs) have an indirect gap
in the bulk phase and only monolayer TMDs have a direct
gap [17]. Moreover, BP exhibits a strong in-plane anisotropic
electrical, optical, and phonon properties, which is absent in
graphene and TMDs [18].

In comparison to graphene, phosphorene is chemically
reactive and tends to form strong bonds with the surface of
substrates which leads to some structural changes [19]. Natu-
rally, chemically stable 2DMs, such as graphene and hexagonal
boron nitride (h-BN), may be used for protecting fragile and
low-chemical-stable 2DMs, such as phosphorene [20].

The properties of substrate often drastically alter the trans-
port behavior of the 2D crystal and the overall characteristics of
the device. Recently, phosphorene has been transferred to the
h-BN substrate [21,22]. The interaction between phosphorene
and substrate is considered to play a crucial role in the
modulation of the electronic properties of phosphorene-based
devices [21,23]. In most currently available 2DMs, a sample
lies on the top of a polar substrate such as h-BN, SiO2, SiC, or
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Al2O3 [24–30]. In such heterostructures, there are polar optical
phonon modes that are localized near the 2DMs-substrate
interface and coupled to the electronic excitations such as
plasmons through the long-range Fröhlich interaction. As a
result, the SO phonon could be considered as the dominant
phonon-plasmon coupling source in 2DMs on polar substrates.

The coupling of SO phonon modes to the plasma os-
cillations of free carriers is known as SO phonon-plasmon
coupling. These coupled modes may be observed by the
infrared (IR) transmission measurements [31,32]. The SO
phonon-plasmon coupling changes the dips in the IR reflectiv-
ity spectra from isolated plasmon and SO phonon frequencies
to the normal coupled ones [33,34].

The coupled SO phonon-plasmon modes are extensively
investigated in 2DMs with isotropic band structure such as
graphene [35–38]. It is shown that this phenomenon modifies
many-body properties such as plasmon modes [33,39,40] and
self energy [41] and can also change the mobility [42,43],
effective mass [41,44], scattering rate [37,45], and inelastic
lifetime [46] in the carrier transport phenomena. Moreover,
it can be considered as a mechanism for tuning the band
gap [26,38,47].

In this paper, we model a system of phosphorene on polar
insulator substrates as shown in Fig. 1. We go beyond the
assumption of independent electron and SO phonon modes
and consider the coupled SO phonon-plasmon oscillations.
Here, we theoretically study the coupled SO phonon-plasmon
modes in monolayer and double-layer phosphorene on polar
substrates using perturbation theory. We start from the expres-
sion for dynamical dielectric function of the coupled system
in the random phase approximation (RPA) level of theory,
and develop a general formalism, which includes the effect
of anisotropic energy dispersion and rotationally misaligned
double-layer system. In such systems having the interaction
between the electrons and substrate SO phonons could yield to
phonon-mediated electron-electron interaction which creates a
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FIG. 1. Schematic figure of a monolayer phosphorene where a
polar insulating material (as an example h-BN) has been used as a
substrate. z indicates the vertical distance of monolayer phosphorene
from substrate.

new set of collective modes with highly anisotropic dispersion.
We find that in the case of phosphorene in contrast to
graphene [33,39] and TMDs [48], the mode coupling effect
not only modifies the plasma dispersion relation but also
enables us to tune the hybrid SO phonon-plasmon modes
in two crystallographic directions. So, the anisotropy is
an important feature of the coupled SO phonon-plasmon
oscillations spectrum in phosphorene systems.

The paper is organized as follows. In Sec. II we present
the theory to calculate the generalized dielectric function in
the presence of SO phonon-electron interaction. From the
generalized dielectric function, we calculate the coupled SO
phonon-plasmon modes in Sec. III and present our results
for the coupled SO phonon-plasmon modes in monolayer and
double-layer phosphorene. Finally, we summarize the remarks
of this paper in Sec. IV.

II. THEORY

For an isolated phosphorene system, the anisotropic energy
bands in the absence of electron-phonon interaction can be
obtained from the k · p free electron Hamiltonian:

H0 =
[
Ec + ηck

2
x + νck

2
y γ kx + βk2

y

γ kx + βk2
y Eν − ηνk

2
x − ννk

2
y

]
, (1)

where Ec (Ev) is the energy of conduction (valence) band edge,
and the effective couplings between the bands are described
by γ and β parameters. The ηc/v and νc/v are related to
the effective masses along x and y directions in the bands.
These effective masses can be used to obtain an approximate
anisotropic energy dispersion for phosphorene monolayer near
the conduction (valence) band minimum (maximum) [15].

In a phosphorene multilayer system with no electron-
phonon interaction, the electrons in each layer interact with
themselves and also with the electrons in other layers through
the following electron-electron interaction Hamiltonian:

Hel−el = 1

2

∑
ij

∑
kqp

vij (q)a†
k+q,ia

†
p−q,j ap,j ak,i , (2)

where vij (q) = v(q)e−qdij (1−δij ) represents the diagonal (in-
tralayer with i = j ) and off-diagonal (interlayer with i �= j )
elements of the bare Coulomb potential matrix. Here, we define
v(q) = 2πe2/qε∞ with ε∞ being the high-frequency dielectric
constant and dij is the distance between the ith and j th layers.

Also, ak,i (a†
k,i) is the electron annihilation (creation) operator

in layer i.
If the phosphorene layers are supported by polar materials,

an additional interaction term involving the SO phonon-
plasmon coupling can be included by using Fröhlich Hamilto-
nian [49]:

Hel-ph =
∑

i

∑
λ

∑
kq

[
Mλ

0 (q)
]
a
†
k+q,iak,i(bqλ + b

†
−qλ) , (3)

which renormalizes the screened electron-electron potential
through the dielectric function matrix, εij (ω,q):

V sc
ij (ω,q) = vij (q)

det |εij (ω,q)| . (4)

In Eq. (3), bqλ (b†qλ) is the phonon annihilation (creation)
operator with wave vector q and branch index λ and Mλ

0 (q) is
the amplitude of the SO phonon-electron interaction [39,50]:

Mλ
0 (q) =

[
v(q)α

ωλ
SO

2
e−2qz

]1/2

, (5)

where ωλ
SO is the SO phonon frequency of the λth branch, z is

the vertical distance between phosphorene and the substrate,
and we define:

α = ε∞

[
1

ε∞ + 1
− 1

ε0 + 1

]
, (6)

with εo being the zero-frequency dielectric constant. Here, we
assume that the phonon-phonon interaction is negligible so
each mode couples to the electrons, independently.

In order to study the effect of SO phonon-electron coupling
on the collective charge-density excitations, one needs to
obtain zeros of the determinant of the dynamical dielectric
function matrix (the poles of the screened potential). We
use the dynamical RPA dielectric function in which the
contribution of the SO phonon-electron interaction is taken
into account [51]:

εij (ω,q) = δij − Uij (ω,q)�i(ω,q) . (7)

Here, Uij (ω,q) is the combined Coulomb and phonon-
mediated interactions between ith and j th layers:

Uij (ω,q) = U0(ω,q)e−qdij (1−δij ) , (8)

where U0(ω,q) = vph(ω,q) + v(q) and the SO phonon-
mediated electron-electron interaction, vph(ω,q), is given
by [52]:

vph(ω,q) =
∑

λ

[
Mλ

0 (q)
]2

Dλ
0 (ω) . (9)

Dλ
0 (ω) is the bare propagator for a phonon of branch index λ:

Dλ
0 (ω) = 2ωλ

SO

ω2 − (
ωλ

SO

)2 . (10)

Also, �j (ω,q) represents the noninteracting dynamic polar-
ization function of layer j which is given by the following
expression:

�j (ω,q) = gs

ν

∑
k

f j (Eq) − f j (Ek+q)

Eq − Ek+q + h̄ω + iη
, (11)
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where f j (Eq) is the Fermi distribution function of the j th layer
at energy E corresponding to the wave vector q, gs = 2 is spin
degeneracy, and η is the broadening parameter which accounts
for the disorder in the system. We use the zero-temperature
polarization function because this approximation is valid at
the typical doping densities n = 5 − 50 × 1012 cm−2 where
the corresponding Fermi temperature (TF ≈ 400–800 K) for
phosphorene is higher than room temperature. However, the
zero-temperature dynamic polarization function for intraband
transitions in an anisotropic 2D material can be calculated
by making use of the following anisotropic parabolic energy
dispersion relation

Ek = h̄2

2

(
k2
x

mx

+ k2
y

my

)
, (12)

in Eq. (11). So one obtains

�i(ω,q)

g2d

=
(

1

Qi

)
[(Z− − sgn(�Z−)

√
Z2− − 1)

− (Z+ − sgn(�Z+)
√

Z2+ − 1)]. (13)

We define Q =
√

md/M̂ (q/kF ) and K =
√

md/M̂ (k/kF )
where M̂ is the mass tensor with diagonal elements mx and my

along x and y directions, md = √
mxmy , g2d = md/πh̄2 and

Z± = ((h̄ω + iη)/h̄QkF νF ) ± (Q/2) with νF = h̄kF /md . By
introducing the rotational angle τi as the angle between the x

axis in the laboratory frame and x direction of the ith layer, we
can write Qi(θ ) = q

√
mdRi(θ )/kF in which the orientation

parameter Ri(θ ) is defined as [6]:

Ri(θ ) =
(

cos2(θ − τi)

mx

+ sin2(θ − τi)

my

)
. (14)

In the case of monolayer, we will have τi = 0. The knowledge
of the appropriate limiting behavior of the polarization
function is important in investigating the excitation spectrum
especially the collective excitations of the system. There-
fore, we obtain the polarization function in the dynamic
long-wavelength limit where the plasmon excitations are
important due to their long lifetimes. In this limit, the
polarization function of Eq. (13) can be approximated as
(see Appendix A)

�i(ω,q,θ )

g2d

≈ Ri(θ )EF

q2

ω2
. (15)

In the following section, we present our calculations for
the coupled SO phonon-plasmon modes in both monolayer
and double-layer phosphorene systems with a number of
experimentally chosen polar substrates/spacers.

III. RESULTS AND DISCUSSION

A. Coupled SO phonon-plasmon modes in
monolayer phosphorene

The RPA dielectric function for a monolayer system in
which the electrons are coupled to SO phonons of a polar
substrate can be obtained through summing over all the bare

TABLE I. Physical parameters of selected polar materials from
Ref. [26].

SiO2 h-BN Al2O3

h̄ω1
SO (meV) 60 101 55

h̄ω2
SO (meV) 146 195 94

ε0 3.9 5.1 12.5
ε∞ 2.5 4.1 3.2
α 0.2 0.132 0.525

bubble diagrams as [39]

εi(ω,q) = 1 − 2πe2

ε∞q
�i(ω,q)

+
∑

λ

αe−2qz

1 − αe−2qz − ω2
/(

ωλ
so

)2 . (16)

In the long-wavelength limit (q → 0) by inserting Eq. (15)
into Eq. (16), we get the following coupled collective modes
(see Appendix B):

ωλ
(+)(q,θ ) = ωλ

so

(
1 + αe−2qz

ω2
pl(q,θ )(
ωλ

so

)2

)
, (17)

ω(−)(q,θ ) = ωpl(q,θ )

(
1 − α

2
e−2qz

)
, (18)

where ωpl(q,θ ) =
√

2πne2Ri(θ )q/ε∞ is the plasmon fre-
quency of the uncoupled anisotropic system. We consider a
phosphorene monolayer sandwiched by polar materials such
as SiO2, h-BN, or Al2O3 which their physical parameters
are listed in Table I. In addition, the effective masses in
x and y directions of phosphorene monolayer are given as
mx ≈ 0.15m0 and my ≈ 0.7m0 where m0 is the free electron
mass [53].

In Fig. 2, we depict the coupled and uncoupled plasmon
modes of phosphorene monolayer on SiO2 substrate calculated
for two main crystallographic directions θ = 0 (q ‖ x) and
θ = π/2 (q ‖ y). According to this figure in the case of SiO2 as
the substrate, there are three hybrid modes, one plasmonlike,
ω−(q,θ ), and two phononlike, ωλ

+(q,θ ), as were previously
predicted theoretically [39,41] and shown experimentally [31]
for graphene monolayer. It can be seen that the ω−(q,θ )
(plasmonlike mode) is lower in energy than the uncoupled
plasmon mode, ωpl(q,θ ), and the lower (upper) phononlike
branch starts from ω1

so (ω2
so) at q = 0 and increases below

(above) the uncoupled plasmon dispersion by increasing q

along both directions. The coupling is strong when the
frequencies of phononlike modes deviate considerably from
the bare SO phonon modes, ωλ

so [see Eq. (17)]. As expected in
2DMs with anisotropic band structure, the hybrid SO phonon-
plasmon modes have higher resonance frequencies [54–56]
and the plasmonlike mods are more affected by the SO phonon-
electron coupling in the direction of the lighter mass, q ‖ x.
In the coupled system, the electrons can be scattered either by
the emission of hybrid SO phonon-plasmon modes (ω+,ω−)
or by the single particle excitation (SPE). The boundary of
SPE continuum represented by the green shaded area in Fig. 2
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FIG. 2. The hybrid SO phonon-plasmon dispersions in phosphorene monolayer on the SiO2 substrate as a function of wave vector q for
two main crystallographic directions of phosphorene: θ = 0 (q ‖ x) and θ = π/2 (q ‖ y) with (a) n = 1 × 1013 cm−2, (b) n = 5 × 1013 cm−2,
and z = 0.2 nm. The uncoupled plasmon dispersion is shown by dashed line. The two horizontal lines represent the energies of SO phonon
modes, i.e., h̄ω1

so = 60 meV and h̄ω2
so = 146 meV.

is given by:

h̄ω±
(SPE)(q,θ ) = Ri(θ )h̄2q2

2
± h̄qνF

√
Ri(θ )md. (19)

Though all hybrid SO phonon-plasmon excitations are
damped at IR frequencies, the plasmonlike mode ω− expe-
riences the Landau damping at smaller q with respect to
the phononlike modes, ωλ

+. On the other hand, the higher
frequency phononlike mode, ω2

+, stays away from ω2
SO and

enters the SPE region at large q for both directions. Therefore,
this mode shows a strong coupling and can be easily detected.
Moreover, at high densities [Fig. 2(b)] where the Fermi energy
exceeds the SO phonon energy, i.e., EF 	 h̄ω2

SO , the upper
phononlike branch strongly deviates from the uncoupled SO
phonon’s energy while the ω1

+ branch still remains between the
two phonon energies. Thus, the high energy phononlike mode,
ω2

+, which is very sensitive to the density and direction, can
be considered as a tunable quantity for applications in optical
plasmonic devices.

Furthermore, we study the impact of angular orientation
of q on the behavior of hybrid SO phonon-plasmon modes
by plotting the loss function, |
(1/ε(ω,q,θ ))|, for q = 0.1 nm
(see Fig. 3). The results show that the maximum value of loss
function occurs around θ = 0 and π (along the x direction)
for all three branches.

In order to explore the effects of specific substrate on the
hybrid SO phonon-plasmon modes, we show the loss functions
of phosphorene monolayer on (a) SiO2, (b) h-BN, and
(c) Al2O3 polar substrates along x direction (θ = 0) in Fig. 4.
One can see that using the Al2O3 (with higher α) as a
polar substrate results in the strong coupling as evidenced by
considerable deviation of ω− from ωpl and of ωλ

+ from ωSO .
It should be pointed out that while the phonon frequency

ωSO is an important parameter for the phononlike modes,
ωλ

+, the α parameter mostly affects the plasmonlike spectrum.
Hence, the choice of substrate can be used to engineer the
plasmon dispersion in phosphorene.

B. Coupled SO phonon-plasmon modes in
double-layer phosphorene

Here, we consider a double-layer phosphorene with equal
electron densities sandwiched by a homogeneous dielectric
medium that models the substrate. It is reasonable to cal-
culate the uncoupled plasmon modes before discussing the
hybrid modes from the zeros of determinant of dielectric
function matrix, Eq. (7). In the leading-q approximation
(long-wavelength limit), two plasmonic branches are obtained
through the following relations [54]:

ωac(q,θ ) = 2q

√
nπe2d12

ε∞

R1(θ )R2(θ )

R1(θ ) + R2(θ )
, (20)

ωop(q,θ ) =
√

2nπe2q

ε∞
(R1(θ ) + R2(θ )). (21)

These two uncoupled branches are shown in Fig. 5(a) for θ = 0
(along the x direction) and in Fig. 5(b) for θ = π/2 (along the
y direction) when SiO2 is considered as a substrate/spacer [54].
It can be seen that the plasmon modes experience a stronger
reduction along the y direction compared to the x direction.

FIG. 3. Loss function, |
(1/ε(ω,q,θ ))|, for q = 0.1 nm with n =
1 × 1013 cm−2 and η = 5 meV. The radial and azimuthal coordinates
are ω and the angular orientation of q, respectively.
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FIG. 4. Effect of changing substrate on the loss function, |
(1/ε(ω,q,θ ))|, for phosphorene monolayer in (ω,q) space along θ = 0 (q ‖ x).
The solid black line is the uncoupled plasmon branch and the two horizontal black dashed lines represent the energies of SO phonon modes of
substrate: (a) SiO2, (b) h-BN, and (c) Al2O3 with n = 1 × 1013 cm−2, z = 0.2 nm and η = 5 meV.

For the case of SO phonon-plasmon coupling in a double-layer
phosphorene, we find two acoustic phononlike modes, ωλ

ac(+),
with λ = 1,2 and one acoustic plasmonlike mode, ωac(−) (see
Appendix B). The long-wavelength dispersions of the acoustic
modes can be written as:

ωλ
ac(+)(q,θ )=ωλ

SO

√
1+ 4nπd12e2q2αe−2qz(

ωλ
SO

)2
ε∞

R1(θ )R2(θ )

R1(θ ) +R2(θ )
,

(22)

ωac(−)(q,θ ) = 2q

√
nπe2d12(1 − αe−2qz)

ε∞

R1(θ )R2(θ )

R1(θ ) + R2(θ )
.

(23)

FIG. 5. (a),(b) The uncoupled and (c),(d) coupled SO phonon-
plasmon modes for two aligned phosphorene monolayers sandwiched
by SiO2 as a function of wave vector q for two main crystallographic
directions: (a),(c) θ = 0 (q ‖ x) and (b),(d) θ = π/2 (q ‖ y) with
n = 1 × 1013 cm−2, d12 = 5 nm, z = 0.2 nm, and η = 5 meV.

In the same vein, we obtain two optical phononlike modes
ωλ

op(+) and one optical plasmonlike mode ωop(−) as

ωλ
op(+)(q,θ ) = ωλ

SO

√
1 + 2nπe2qαe−2qz(

ωλ
SO

)2
ε∞

(R1(θ ) + R2(θ )).

(24)

ωop(−)(q,θ ) =
√

2nπe2q(1 − αe−2qz)

ε∞
(R1(θ ) + R2(θ )) .

(25)

The behavior of the coupled modes with SiO2 as sub-
strate/spacer is presented in Figs. 5(c) and 5(d) for θ = 0 and
θ = π/2, respectively. The dispersion relations of ωop/ac(−)

modes resemble the uncoupled acoustic and optical plasmon
modes with an additional (1 − αe−2qz)1/2 multiplier which
makes these coupled modes lie lower than the uncoupled
ones.

Similar to the case of phosphorene monolayer, the hybrid
SO phonon-plasmon frequencies along q ‖ x are larger than
along q ‖ y because the carriers along the y direction have
larger mass and so get damped faster. One can also see that
the uncoupled plasmon modes for q ‖ y lie lower than ω2

+ and
therefore SO phonon-plasmon coupling along the y direction
is substantially weaker compared to the x direction.

In order to understand how the orientation parameter Ri(θ )
impacts the behavior of hybrid SO phonon-plasmon modes in
the double-layer system, we show three cases in which τ1 = 0
and τ2 progressively increases from π/4 to π/3 and to π/2
along the x direction and for substrate/spacer SiO2 in Fig. 6.
One may notice that, in general, with the reduction of τ2,
the coupled SO phonon-plasmon modes become significantly
stronger because the hybrid modes are larger along the lower
mass direction, i.e., θ = 0. Furthermore, it is clear that the three
acoustic plasmonlike/phononlike modes are very sensitive to
the rotation of layers and get damped as the angle of rotation is
increased. Finally, we address the effect of separation between
layers, d12, on the coupled modes along the x direction in
Fig. 7 for the substrate/spacer SiO2. Here, increasing the
separation between layers shows a similar effect on hybrid
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FIG. 6. Effect of changing rotation angle on the loss function, |
[1/detε(ω,q,θ )]|, for double-layer phosphorene sandwiched by SiO2

in (ω,q) space along θ = 0 (q ‖ x) for τ1 = 0 and (a) τ2 = π/4, (b) τ2 = π/3, and (c) τ2 = π/2 with d12 = 5 nm, n = 1 × 1013 cm−2, and
z = 0.2 nm.

mode energies as the reduction of rotation angle τ2 (see Fig. 6).
As expected, the hybrid acoustic branches, similar to the
uncoupled ones, depend strongly on the separation between
layers at long wavelengths and move to the optical branches
by increasing the layers’ spacing. As a result, by adjusting
two parameters τ2 and d12, the acoustic branches may get
strongly damped or a transition to the optical modes may be
observed.

IV. CONCLUSION

In summary, we have considered monolayer and double-
layer phosphorene systems located on commonly used po-
lar substrates (SiO2, h-BN, and Al2O3) and calculated the
anisotropic coupled SO phonon-plasmon dispersion relations.
In the presented theory, the dynamical dielectric function is
calculated within the RPA which includes the many-body
electron-electron interaction in phosphorene layer(s) as well
as the interaction between electrons and the long-range
electric field generated by the substrate SO phonons. More

importantly, we have obtained some analytical expressions
for the SO phonon-plasmon dispersion relations in the long-
wavelength limit which yield the same results of loss function
from dielectric function. In the long-wavelength limit, three
hybrid SO phonon-plasmon branches are obtained due to two
relevant SO phonon modes of polar substrates in monolayer
phosphorene. In the case of double layer, these hybrid modes
are doubled with three acoustic ωac(±) and three optical
modes ωop(±). We have shown that these hybrid modes
are considerably stronger along the x direction because of
lower effective mass of electrons. Moreover, by increasing
the electron density, the hybrid excitation modes become
stronger at both directions, simultaneously. Among mentioned
substrates, we have found that Al2O3 as a polar substrate leads
to more pronounced coupling of phonon-plasmon modes in
comparison to h-BN and SiO2 for the electron density used
here. Therefore, the phonon frequency of a substrate, ωSO ,
is the most effective parameter in phononlike modes, ωλ

+,
whereas α parameter changes the plasmonlike mode, ω−.
Hence, the choice of substrate can be utilized in order to

FIG. 7. Effect of changing separation between layers on the loss function, |
[1/detε(ω,q,θ )]|, for the two parallel phosphorene monolayers
sandwiched by SiO2 in (ω,q) space along θ = 0 (q ‖ x) for (a) d12 = 2 nm, (b) d12 = 5 nm, and (c) d12 = 8 nm with n = 1 × 1013 cm−2 and
z = 0.2 nm.
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engineer the SO phonon-plasmon dispersion in phosphorene.
We have also investigated the effect of misalignment of two
layers on the hybrid modes in double-layer phosphorene and
found that the acoustic phononlike modes are more affected
by rotation. In addition, we have observed that by decreasing
separation between two layers the acoustic modes move away
from the optical modes and quickly damp. As a result, the
rotation angle and separation between two layers can be used
as a mechanism for tuning the SO phonon-plasmon coupling
effects.

APPENDIX A: THE POLARIZATION FUNCTION IN
LONG-WAVELENGTH LIMIT

The dynamic polarization function given by Eq. (11) has
the following expression in the long-wavelength limit at zero
temperature:

�(ω,q,θ )

g2d

= 1

2

[
−2 +

√(
1 − 2ω

kF νF Q2

)2

− 4

Q2

+
√(

1 + 2ω

kF νF Q2

)2

− 4

Q2

]
. (A1)

One can rewrite Eq. (A1) as:

�(ω,q,θ )

g2d

= 1

2

⎡
⎣−2 +

(
1 − 2ω

kF νF Q2

)(
1 − 2/Q2(

1 − 2ω
kF νF Q2

)2

)

+
(

1 + 2ω

kF νF Q2

)(
1 − 2/Q2(

1 + 2ω
kF νF Q2

)2

)⎤
⎦

(A2)

and find the approximate relation:

�(ω,q → 0,θ )

g2d

≈ −2

Q2

(
1

1 − 4ω2

(kF νF Q2)2

)
. (A3)

Finally, by ignoring unity in the denominator and making
use of Qi(θ ) = q

√
mdRi(θ )/kF and EF = h̄2k2

F /2md , one
obtains Eq. (15).

APPENDIX B: SO PHONON-PLASMON MODES IN
LONG-WAVELENGTH LIMIT

1. Monolayer

Inserting Eq. (15) into Eq. (16), we have:

ε(ω,q,θ ) = 1 − ω2
pl(q,θ )

ω2(q,θ )

+
∑

λ

αe−2qz

1 − αe−2qz − ω2(q,θ )
/(

ωλ
so

)2 . (B1)

From the zeros of dielectric function (here we drop the q and
θ for simplicity):

ω2
(
ω2 − (

ωλ
SO

)2) − ω2
pl

(
ω2 − (

ωλ
SO

)2)
−ω2

pl

(
ωλ

SO

)2
αe−2qz = 0, (B2)

the coupled SO phonon-plasmon modes are obtained as:

(ωλ
(±))

2 = 1
2

[((
ωλ

SO

)2 + ω2
pl

) ± [((
ωλ

SO

)2 − ω2
pl

)
+ 4ω2

pl

(
ωλ

SO

)2
αe−2qz

]1/2]
. (B3)

By Taylor expanding the right hand side of Eq. (B3), we get:

ωλ
(+)(q,θ ) = ωλ

so

(
1 + αe−2qz

ω2
pl(

ωλ
so

)2 − ω2
pl

)
(B4)

ωλ
(−)(q,θ ) = ωpl

(
1 − αe−2qz

2

(
ωλ

so

)2(
ωλ

so

)2 − ω2
pl

)
. (B5)

Since ωpl → 0 at the long-wavelength limit, one can safely
ignore ωpl in the denominator of the above equations and
obtain Eqs. (17) and (18).

2. Double layer

Here, we calculate the coupled SO phonon-plasmon modes
in double-layer systems with anisotropic band structure. In
such systems, the rotation of one layer with respect to the other
should be considered. In order to determine the dispersion
relation of the coupled modes, we need to calculate the zeros
of determinant of the total dielectric matrix [Eq. (7)] in the
long-wavelength limit:

ε(ω,q,θ ) = 1 − (R1(θ ) + R2(θ ))�′(q,ω)U0(q,ω)

+ (U0(q,ω)�′(q,ω))2R1(θ )R2(θ )(1 − e−2qd12 ),

(B6)

where �′(ω,q,θ ) = �i(ω,q,θ )/Ri(θ ). By doing some alge-
bra, we get the following relation:

ε(ω,q,θ ) = U 2
0 (q,ω)(2qd12)R1(θ )R2(θ )

× [�′(ω,q,θ ) − �+(ω,q,θ )]

× [�′(ω,q,θ ) − �−(ω,q,θ )], (B7)

where �+ and �− defined as

�+(ω,q,θ ) = R1(θ ) + R2(θ )

(R1(θ )R2(θ )U0(q,ω)2qd12
(B8)

and

�−(ω,q,θ ) = 1

(R1(θ ) + R2(θ ))U0(q,ω)
. (B9)

The dispersion relation of the couple modes is given by
�′(ω,q,θ ) = �±(ω,q,θ ). Using the Eqs. (5)–(10) in the
�′(ω,q,θ ) = �+(ω,q,θ ) condition, we get:

ω2(ω2 − (
ωλ

SO

)2)
− q2fac(θ )

[
ω2 − (

ωλ
SO

)2 + (
ωλ

SO

)2
αe−2qz

] = 0, (B10)

where fac(θ ) is defined as:

fac(θ ) = 4πne2d12

ε∞

R1(θ )R2(θ )

R1(θ ) + R2(θ )
. (B11)
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After some algebra, we derive the following relation:

(
ωλ

ac(±)

)2 =
(
ωλ

so

)2 + q2fac(θ )

2
±

√((
ωλ

SO

)2 − q2fac(θ )
)2 + 4q2fac(θ )

(
ωλ

SO

)2
αe−2qz

4
(B12)

which can be simplified in the long-wavelength limit as:

(
ωλ

ac(+)

)2 = (
ωλ

so

)2
[

1 + fac(θ )q2αe−2qz(
ωλ

so

)2

]
(B13)

and (
ωλ

ac(−)

)2 = fac(θ )q2[1 − αe−2qz]. (B14)

Substituting the relation for fac(θ ) in the above relations, one obtains Eqs. (22) and (23) for the coupled acoustic modes. In the
case of the coupled optical modes, we use the �′(q,ω) = �−(q,ω) condition and get the following equation:

ω2(ω2 − (ωλ
so)2) − fop(θ )

[
ω2 − (

ωλ
so

)2 + (
ωλ

so

)2
αe−2qz

] = 0, (B15)

where fop(θ ) is given by:

fop(θ ) = 2πne2

ε∞
(R1(θ ) + R2(θ )). (B16)

Solving Eq. (B15) yields:

(
ωλ

op(±)

)2 =
(
ωλ

so

)2 + qfop(θ )

2
±

√((
ωλ

so

)2 − qfop(θ )
)2 − 4qfop(θ )

(
ωλ

so

)2
(1 − αe−2qz)

4
. (B17)

In the long-wavelength limit, we end up with the following expressions for the coupled optical modes:

(
ωλ

op(+)

)2 = (ωλ
so)2

[
1 + qfop(θ )αe−2qz(

ωλ
so

)2

]
(B18)

and (
ωλ

op(−)

)2 = qfop(θ )[1 − αe−2qz]. (B19)

Finally, by inserting fop(θ ) into Eqs. (B18) and (B19) one obtains Eqs. (24) and (25).
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