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Theoretical investigation of electron-hole complexes in anisotropic two-dimensional materials
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Trions and biexcitons in anisotropic two-dimensional materials are investigated within an effective mass
theory. Explicit results are obtained for phosphorene and arsenene, materials that share features such as a direct
quasiparticle gap and anisotropic conduction and valence bands. Trions are predicted to have remarkably high
binding energies and an elongated electron-hole structure with a preference for alignment along the armchair
direction, where the effective masses are lower. We find that biexciton binding energies are also notably large,
especially for monolayer phosphorene, where they are found to be twice as large as those for typical monolayer
transition metal dichalcogenides.
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Recently discovered few-layer semiconductors, such as
transition metal dichalcogenides (TMDCs) and black phos-
phorus [1,2] (phosphorene, or bP), have given rise to a class
of novel quasi-two-dimensional (2D) materials. Phosphorene,
in particular, has attracted interest due to its unique properties,
namely a direct band-gap with a highly anisotropic band
structure [3,4] and high carrier mobilities [1,2]. Techno-
logical applications, such as phosphorene-based field effect
transistors [5] and photodetector devices [6,7], have been
proposed, suggesting that this material might play an important
role in opto-electronics in the near future. Few-layer arsenic
(arsenene) has been theoretically demonstrated to be stable and
to share many of the electronic properties with phosphorene.
In particular, it is also a single-element crystalline layer, with
highly anisotropic bands and a direct band gap [8,9]. Most
importantly, the band anisotropy in both materials gives rise to
unique physical properties, e.g., direction-dependent effective
masses [10], mobilities [1], and excitonic polarizabilities [11],
features expected to yield avenues for new device applica-
tions [12].

One of the hallmarks of atomically thin two-dimensional
materials is their unprecedented high exciton binding energies,
which arise as a consequence of the reduced screening of
the electron-hole Coulomb interaction by the environment
surrounding the layer. Such strong electron-hole interactions
allow for the observation of a clear Rydberg series of
excitonic states [13,14], as well as resolved trion and biexciton
peaks in opto-electronic experiments [15–18]. In addition,
reduced dimensionality leads to deviations from the standard
3D form of the electron-hole interaction, which results in
clear deviations from the hydrogenic form of excitonic level
spacing [19–22].

Interest in higher order excitonic complexes in black
phosphorus has recently been boosted by experimental claims
of trion binding energies as high as ∼100 meV, as measured
by photoluminescence [18]. Such a huge trion binding energy
would be of great importance, allowing for the possibility that
a tightly bound trion could be driven by in-plane electric fields
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without dissociation. This experimental result was rationalized
within the context of a quasi-one-dimensional charge-complex
model [18,23], arising from the high effective mass anisotropy
in this system, and highlights the possibility that material
anisotropy may lead to novel effects associated with larger
electron-hole complexes.

In this work, we calculate trion and biexciton binding
energies in anisotropic 2D materials, with special emphasis on
n-layer black phosphorus (n-bP) and the recently theoretically
proposed n-layer arsenene (n-As). Our results show that,
although larger than the usual trion and biexciton binding
energies in the TMDCs, the trion binding energies in these
materials are significantly lower than those claimed in recent
experimental works. Possible reasons for this (apparent)
discrepancy between experimental and theoretical values are
addressed, and the validity of the 1D model [23] of trion
binding energies in this system is questioned.

Within the parabolic approximation for the energy bands of
bP, the trion Hamiltonian may be written as
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∑
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where m
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effective mass in the x (y) direction. The plus (minus) sign
stands for a positively (negatively) charged trion, where an
extra hole h′ (electron e′) with effective mass m
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e ) is added through the third and fourth kinetic

energy terms to the excitonic pair represented by the first two
terms. The interaction potential between charges is assumed to
be of the Keldysh form [19–22], with the dielectric screening
of the different media above (vacuum) and below (substrate)
the semiconductor layer taken into account:

V− = Veh(�rh − �re) + Veh(�rh − �re′ ) + Vee(�re − �re′),

V+ = Veh(�rh − �re) + Veh(�rh′ − �re) + Vhh(�rh − �rh′),

Vij = qiqj e
2
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[
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)
− Y0

( |�ri − �rj |
ρ0

)]
. (2)

Here, qe(h) is the electron (hole) charge and ε1(2) is the effective
dielectric constant of the vacuum (substrate) above (below)
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the layer. H0 and Y0 are the Struve and Neumann functions,
respectively, and ρ0 = ndε/(ε1 + ε2) is the screening length,
where d is the layer width, assumed to be approximately equal
to the interlayer distance (5.19 Å and 5.00 Å for n-bP and
n-As, respectively). The effective dielectric constant ε within
the layer is taken to be ε = 10ε0 for both materials [24,25].

Without any further simplification, one can obtain ground
state properties of the full Hamiltonian [Eq. (1)] by diffusion
Monte Carlo (DMC) calculations [26,27], as explained in
detail in the Supplemental Material [28]. Since DMC does
not require storing a fine mesh and large arrays associated
with the wave functions, this method requires much lower
computational memory as compared to finite-difference-based
methods, which makes it suitable for problems with a large
number of variables, allowing for the description of larger
exciton complexes such as biexcitons. On the other hand, bare
DMC calculations do not directly provide the wave functions,
although pair correlation functions can still be extracted by the
forward walking method [29].

As an alternative approach, we propose another method
for obtaining excitons and trions eigenstates, that is based on
the so-called split-operator technique [30]. Just like DMC,
this method uses imaginary time (τ = it) evolution, but now
with the imaginary time evolution operator U (τ + �τ,τ ) =
exp(−H�τ/�), whose potential and kinetic energy terms are
conveniently split into a series of exponentials,

U (τ + �τ,τ ) ≈ e− �τ
2�

V e− �τ
�

T1e− �τ
�

T2 · · · e− �τ
�

TN e− �τ
2�

V , (3)

where Ti is the kinetic energy term in the i-direction (for a
system with N dimensions). This approximation, based on
the Suzuki-Trotter expansion, has an O(�τ 3) error, which
is controlled here by using a small imaginary time-step
�τ [30–32]. By propagating an arbitrary initial wave function
in imaginary time, this method directly yields the trion
ground state energy ET and the trion wave function, but
requires storing a high-dimensional numerical array. In this
case, reducing the number of variables of the system is of
essence. For negatively charged trions, this is achieved by
following the procedure proposed in Refs. [23,33], which
is generalized for the anisotropic case in the Supplemental
Material [28]. This procedure reduces the six-dimensional
Hamiltonian, Eq. (1), to a four-dimensional one using the
relative coordinates between the first electron and the hole,
�R = �rh − �re, i.e., the exciton coordinates, and between the

second electron and the exciton center of mass, �r = �re′ − �Rcm
exc.

Adapting this procedure to deal with a positively charged trion
(H+) is straightforward. Throughout this paper, we will use
either DMC or split-operator methods, whenever convenient.
Material parameters for n-bP and n-As are obtained from
Refs. [10] and [9], respectively.

The ground state exciton binding energy EX
b is obtained

by the same methods proposed here, but using the neutral
exciton Hamiltonian (see, e.g., Eq. (3) of Ref. [11]). We then
subtract the numerically obtained exciton and trion energies to
calculate the trion binding energy ET

b = EX
b − ET . Figure 1(a)

shows the positive (X+, open red symbols) and negative (X−,
closed black symbols) trion energies of n-bP (squares) and
n-As (triangles), obtained by DMC calculations, as a function
of the number of layers n. We first take a suspended sample,
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FIG. 1. (a) Binding energies of positively (red open symbols) and
negatively (black full symbols) charged trions in n-bP (squares) and
n-As (triangles), as calculated by DMC and by the split-operator
technique (blue stars and diamonds, respectively). DMC calculations
have an energy variance ≈ ± 0.3 meV. (b) Square root of the
expectation values of x2 (black) and y2 (red) of the exciton (full
symbols) and e-c.m. (open symbols) contributions to the total wave
function, for a negatively charged trion in n-bP (squares) and n-As
(triangles), as obtained by the split-operator technique.

by setting ε2 = ε0 [34]. Since electrons and holes have similar
masses in both materials, positive and negative trions have
almost the same energy, although a few meV separation can
be observed for lower number of layers in n-bP, where the
electron-hole mass disparity is enhanced [9,10]. Due to such
high similarity between X− and X+ states, results for the latter
are omitted in the subsequent discussion. Results obtained with
the split-operator method for X− are shown for n-bP and n-As
as blue stars and diamonds, respectively, and agree well with
the DMC results.

Charge carriers in these materials exhibit different effective
masses along different directions, which results in a distinct
spatial extent of the x and y components of the position
vectors �r and �R defining the trion. These quantities are
calculated separately for the exciton ( �R) and electron-exciton
center-of-mass (e-c.m., �r) contributions to the overall wave
function, respectively, which are illustrated in Fig. 1(b) for
X− in n-bP (squares) and n-As (triangles). We observe that
both the exciton (full symbols) and the e-c.m. (open symbols)
distributions are wider in the (armchair) x direction, due to
the lower effective masses in this direction. The anisotropy
of the probability distributions in n-As is strongly enhanced
as the number of layers increases, as a consequence of the
increase of the hole effective mass in the y direction [9].

The behavior of the electron and hole distributions in
anisotropic trions is further illuminated by looking at the
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FIG. 2. (a) Correlation functions for the electron-hole (ge-h,
black) pair and electron-exciton center of mass (ge-c.m., red) at x = 0
(solid) and y = 0 (dashed) in 1-bP over a SiO2 substrate. The blue
dotted line illustrates ge-c.m. for the isotropic mass case. The full
correlation function distributions over the (x,y) plane are shown for
(b) ge-h(x,y), (c) ge-c.m.(x,y), and (d) ge-c.m.(x,y) for the isotropic
case.

correlation functions between the particles. Due to the partic-
ular choice of coordinates in our calculations, it is convenient
to define

ge-h( �ρ) = 〈δ( �ρ − �R)〉 =
∫

Sr

|�(�r, �ρ)|d2r (4)

as the correlation function between electron and hole and

ge-c.m.( �ρ) = 〈δ( �ρ − �r)〉 =
∫

SR

|�( �ρ, �R)|d2R (5)

as the correlation function between the second electron and
the exciton center of mass. These correlation functions are
shown along the x = 0 (solid) and y = 0 (dashed) axes in
Fig. 2(a). The maximum of the e-c.m. function ge-c.m. is clearly
displaced from the (x,y) = (0,0) point, which is reasonable,
since this function describes the probability distribution for
an electron interacting with an exciton, which provides
both repulsive (due to the second electron) and attractive
(due to the hole) contributions to the potential. Results for
ge-c.m. in a system with the same parameters as 1-bP, but
assuming isotropic effective masses mx

e = m
y
e = 0.17m0 and

mx
h = m

y

h = 0.15m0, are shown as a blue dotted curve, for
comparison.

The anisotropy of the excitonic component ge-h becomes
even more evident in the two-dimensional contour plot of the
correlation functions, as illustrated in Fig. 2(b), which is clearly
stretched out along the x axis. As for the e-c.m. component,
Fig. 2(c) shows that the effective mass anisotropy leads to
a function with two clear peaks along the x axis. In fact,
since the electrons in the X− trion repel each other, they are
expected to seek the largest possible separation. On the other
hand, electrons and holes attract each other. Thus the lowest
energy situation that satisfies a large (short) electron-electron

(hole) separation is expected to be the one where the three
particles form an electron-hole-electron (e-h-e) line [23]. The
e-h-e line could be along any direction in an isotropic material,
as verified by ge-c.m. for the isotropic case in Fig. 2(d), where
the correlation function is circularly symmetric with a peak at
r �= 0. However, since n-bP has anisotropic effective masses,
the line along the x (armchair) direction, where effective
masses are lower, is the most energetically favorable. This
linear trion structure has been used [18] in an effectively 1D
trion model, following the steps of Ref. [23], from which a
trion energy of ∼100 meV was obtained. Among the major
issues for the validity of this model in the present context is
the fact that it has been developed for a material with isotropic
bands, where electrons and holes interact via a bare Coulomb
potential, which is not the case for excitons and trions in
few-layer phosphorene, as previously discussed.

So far, the trion binding energies have been obtained
for a suspended sample, i.e., without a substrate. Trions in
suspended 1-bP are found to have a remarkably high binding
energy ET

b = 51.6 meV, as compared to monolayer TMDCs
[cf. Fig. 1(a)]. However, in recent experimental measurements
of excitons and trion states in 1-bP [18,24], the phospherene
layer has been deposited on a SiO2 substrate (ε2 = 3.8ε0).
The trion binding energy in 2D materials is reduced by
screening of the electron-hole interaction potential due to its
surrounding media. In order to address this issue, we have
calculated the dependence of the trion binding energies on
the dielectric constant of the substrate, ε2, which is shown
in Fig. 3 for n-bP and n-As [34]. We observe that if one
assumes a SiO2 substrate below the layer, the trion binding
energy of 1-bP decreases to ∼34.2 meV, which is much
lower than the 100 meV claimed in recent experiments [18].
One could argue that, even in the presence of a substrate,
the remarkably high 51 meV trion binding energy found for
ε2 = ε0 could still be valid if, for instance, the measurement
is made in a region of the layer where it is accidentally
suspended from the surface of the substrate. On the other
hand, the exciton peak in that experiment was located near
1.75 eV, whereas the exciton binding energy for ε2 = ε0 in
our model is found to be EX

b ≈ 0.744 eV, which implies
an electronic (quasi-particle) gap of ≈2.494 eV, inconsistent
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FIG. 3. Trion binding energies of n-bP (lines) and n-As (symbols)
as a function of the dielectric constant of the substrate.
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TABLE I. Exciton (EX
b ) and biexciton (EXX

b ) binding energies
(in meV) obtained by DMC calculations. EXX is the full biexciton
energy, i.e., before subtraction of the exciton contribution.

EX
b EXX EXX

b

1-bP 743.9 1528.7 40.9
2-bP 441.8 903.4 19.8
3-bP 318.9 650.9 13.1
4-bP 253.5 516.5 9.5

2-As 497.1 1016.1 21.9
3-As 363.7 743.2 15.8
4-As 291 592.8 10.8

with ab initio band structure calculations available in the
literature for this material [3,10,24,35]. Assuming ε2 = 3.8ε0,
one obtains EX

b ≈ 0.405 eV, suggesting an electronic gap of
≈2.155 eV, which is in good agreement with ab initio results
and corroborates with the picture of a screened trion, with a
lower binding energy of ET

b = 34.16 meV.
Finally, we have performed DMC calculations to obtain

the biexciton energies EXX in suspended n-bP and n-As
layers, as shown in Table I. The biexciton Hamiltonian is
obtained from Eq. (1) by simply adding an extra charge and
properly adapting the potential. The biexciton binding energies
are obtained as EXX

b = EXX − 2EX
b . The exciton binding

energies EX
b are also given in Table I, showing fairly good

agreement with results from more sophisticated GW-Bethe-
Salpeter calculations for n-bP [36]. The biexciton energies are
surprisingly large, especially for 1-bP, where they are almost
twice as large as those of monolayer TMDCs [37], which
should motivate the search for an experimental observation of
biexciton peaks in these 2D materials.

In summary, we have calculated trion and biexciton energies
in two examples of anisotropic 2D materials: few-layer
phosphorene and the recently theoretically proposed arsenene.
Although binding energies of these charge complexes are
found to be much higher than in their bulk counterparts and
even higher than in other 2D materials, such as TMDCs, they
are much lower than the remarkably high ∼100 meV trion
energy claimed for phosphorene in recent experiments [18].

Such a high trion binding energy was explained as due to the
quasi-1D nature of trions in this system, as a result of its highly
anisotropic effective masses. In this case, arsenene would
also exhibit such high trion energies, which is not predicted
by our theory. It is important to note that the observation
of trion binding energies in optical experiments such as
photoluminescence and absorption strongly depends on the
doping of the sample under investigation [38]. This issue was
indeed addressed by the authors of Ref. [18], who noted that
the excitation power in their photoluminescence experiments
is enhanced to reduce the influence of doping on the results.
However, this study was performed only within the range
from 0.19 to 1.15 μW, since higher excitation power would
damage the sample. Within this range, the trion energy peak
monotonically decreases almost linearly, making it difficult
to properly estimate the exact converged value of the trion
binding energy. Consequently, the 100 meV estimate in this
experiment can only be seen as an upper bound, as emphasized
by the authors of Ref. [18]. In this sense, the lower trion
binding energies found in our study, and confirmed by different
calculation methods, suggest that either (i) trions in this system
are not properly described by Wannier-Mott theory or (ii) the
upper bound for the trion binding energy observed in recent
experiments with bP is still somewhat far from its actual value.
Since Wannier-Mott theory has been successfully used to
model experimentally obtained excitonic spectra for different
2D materials, and because our model yields exciton binding
energies in bP in good agreement with ab initio calculations,
it would appear that the Wannier-Mott approach is sound. Our
results then imply that more detailed experiments on trions in
few-layer bP are needed, e.g., investigating the influence of
an external gate potential on the trion peak position, so as to
reduce the effect of doping by controlling the Fermi level of
the system [38].
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